The multivariable version of ordinary and generalized Hermite polynomials are the natural solutions of the classical heat equation and of its higher order versions. We derive the associated Burgers equations and show that analogous non-linear partial differential equations can be derived for Laguerre polynomials. The starting point of this extension is the Laguerre diffusive equation, whose nonlinear extension reveals interesting implications involving families of mixed polynomials. In this way we have a general scheme to obtain new exact explicit solutions for nonlinear PDEs by using Laguerre, Hermite and other families of polynomials of Appèl and non-Appèl type.

Dattoli, G., Garra, R., Licciardi, S. (2024). Hermite, Higher order Hermite, Laguerre type polynomials and Burgers like equations. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 445 [10.1016/j.cam.2024.115821].

Hermite, Higher order Hermite, Laguerre type polynomials and Burgers like equations

Licciardi, Silvia
Methodology
2024-08-01

Abstract

The multivariable version of ordinary and generalized Hermite polynomials are the natural solutions of the classical heat equation and of its higher order versions. We derive the associated Burgers equations and show that analogous non-linear partial differential equations can be derived for Laguerre polynomials. The starting point of this extension is the Laguerre diffusive equation, whose nonlinear extension reveals interesting implications involving families of mixed polynomials. In this way we have a general scheme to obtain new exact explicit solutions for nonlinear PDEs by using Laguerre, Hermite and other families of polynomials of Appèl and non-Appèl type.
1-ago-2024
Settore IIET-01/A - Elettrotecnica
Dattoli, G., Garra, R., Licciardi, S. (2024). Hermite, Higher order Hermite, Laguerre type polynomials and Burgers like equations. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 445 [10.1016/j.cam.2024.115821].
File in questo prodotto:
File Dimensione Formato  
21) Garra.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 866.62 kB
Formato Adobe PDF
866.62 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2310.06864v1.pdf

accesso aperto

Tipologia: Pre-print
Dimensione 1.95 MB
Formato Adobe PDF
1.95 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/659693
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact