High-harmonic generation (HHG) has emerged as a central technique in attosecond science and strong-field physics, providing a tool for investigating ultrafast dynamics. However, the microscopic mechanism of HHG in solids is still under debate, and it is unclear how it is modified in the ubiquitous presence of phonons. Here we theoretically investigate the role of collectively coherent vibrations in HHG in a wide range of solids (e.g., hBN, graphite, 2H-MoS2, and diamond). We predict that phonon-assisted high harmonic yields can be significantly enhanced, compared to the phonon-free case - up to a factor of similar to 20 for a transverse optical phonon in bulk hBN. We also show that the emitted harmonics strongly depend on the character of the pumped vibrational modes. Through state-of-the-art ab initio calculations, we elucidate the physical origin of the HHG yield enhancement - phonon-assisted photoinduced carrier doping, which plays a paramount role in both intraband and interband electron dynamics. Our research illuminates a clear pathway toward comprehending phonon-mediated nonlinear optical processes within materials, offering a powerful tool to deliberately engineer and govern solid-state high harmonics.

Zhang J., Neufeld O., Tancogne-Dejean N., Lu I.T., Hübener H., De Giovannini U., et al. (2024). Enhanced high harmonic efficiency through phonon-assisted photodoping effect. NPJ COMPUTATIONAL MATERIALS, 10(1) [10.1038/s41524-024-01399-z].

Enhanced high harmonic efficiency through phonon-assisted photodoping effect

Zhang J.;De Giovannini U.;Rubio A.
2024-01-01

Abstract

High-harmonic generation (HHG) has emerged as a central technique in attosecond science and strong-field physics, providing a tool for investigating ultrafast dynamics. However, the microscopic mechanism of HHG in solids is still under debate, and it is unclear how it is modified in the ubiquitous presence of phonons. Here we theoretically investigate the role of collectively coherent vibrations in HHG in a wide range of solids (e.g., hBN, graphite, 2H-MoS2, and diamond). We predict that phonon-assisted high harmonic yields can be significantly enhanced, compared to the phonon-free case - up to a factor of similar to 20 for a transverse optical phonon in bulk hBN. We also show that the emitted harmonics strongly depend on the character of the pumped vibrational modes. Through state-of-the-art ab initio calculations, we elucidate the physical origin of the HHG yield enhancement - phonon-assisted photoinduced carrier doping, which plays a paramount role in both intraband and interband electron dynamics. Our research illuminates a clear pathway toward comprehending phonon-mediated nonlinear optical processes within materials, offering a powerful tool to deliberately engineer and govern solid-state high harmonics.
2024
Settore PHYS-04/A - Fisica teorica della materia, modelli, metodi matematici e applicazioni
Zhang J., Neufeld O., Tancogne-Dejean N., Lu I.T., Hübener H., De Giovannini U., et al. (2024). Enhanced high harmonic efficiency through phonon-assisted photodoping effect. NPJ COMPUTATIONAL MATERIALS, 10(1) [10.1038/s41524-024-01399-z].
File in questo prodotto:
File Dimensione Formato  
Enhanced high harmonic efficiency through phonon-assisted photodoping effect.pdf

accesso aperto

Descrizione: articolo
Tipologia: Versione Editoriale
Dimensione 1.62 MB
Formato Adobe PDF
1.62 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/659033
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact