The world of metal–organic frameworks (MOFs) has become a hot topic in recent years due to the extreme variety and tunability of their structures. There is evidence of MOFs that exhibit intrinsic luminescence properties that arise directly from their organic components or from the interaction between them and metallic counterparts. A new perspective is to exploit the porous nature of MOFs by encapsulating luminescent guests, such as organic dyes, in order to explore possible changes in the luminescence activity of the combined systems. This work is focused on the optical study of zirconium-based MOF-808 and its interaction with encapsulated rhodamine B molecules. Using a plethora of different techniques, we were able to unravel its photocycle. MOF-808 displays intrinsic luminescence activity that derives from an energy transfer process from the linker to the metal sites occurring in 300 ps. The emission is a singlet–singlet transition in aqueous solution, and it is a triplet transition in powdered form. After exploring the bare MOF, we combined it with rhodamine B molecules, following an easy post-synthetic process. Rhodamine B molecules were found to be encapsulated in MOF pores and interact with the MOF's matrix through nanosecond energy transfer. We created a totally new dual-emitting system and suggested a way, based on the time-resolved studies, to clearly unravel the photocycle of MOFs from the very first photoexcitation.
Giuseppe FIcarra, Alice Sciortino, Ludovico Giuseppe Barbata, Romy Ettlinger, Vincenzo De Michele, Emmanuel Marin, et al. (2024). Unveiling MOF-808 photocycle and its interaction with luminescent guests. PHYSICAL CHEMISTRY CHEMICAL PHYSICS [10.1039/d4cp02279c].
Unveiling MOF-808 photocycle and its interaction with luminescent guests
Giuseppe FIcarra;Alice Sciortino;Ludovico Giuseppe Barbata;Marco Cannas;Gianpiero Buscarino
2024-08-22
Abstract
The world of metal–organic frameworks (MOFs) has become a hot topic in recent years due to the extreme variety and tunability of their structures. There is evidence of MOFs that exhibit intrinsic luminescence properties that arise directly from their organic components or from the interaction between them and metallic counterparts. A new perspective is to exploit the porous nature of MOFs by encapsulating luminescent guests, such as organic dyes, in order to explore possible changes in the luminescence activity of the combined systems. This work is focused on the optical study of zirconium-based MOF-808 and its interaction with encapsulated rhodamine B molecules. Using a plethora of different techniques, we were able to unravel its photocycle. MOF-808 displays intrinsic luminescence activity that derives from an energy transfer process from the linker to the metal sites occurring in 300 ps. The emission is a singlet–singlet transition in aqueous solution, and it is a triplet transition in powdered form. After exploring the bare MOF, we combined it with rhodamine B molecules, following an easy post-synthetic process. Rhodamine B molecules were found to be encapsulated in MOF pores and interact with the MOF's matrix through nanosecond energy transfer. We created a totally new dual-emitting system and suggested a way, based on the time-resolved studies, to clearly unravel the photocycle of MOFs from the very first photoexcitation.File | Dimensione | Formato | |
---|---|---|---|
d4cp02279c.pdf
Solo gestori archvio
Descrizione: articolo
Tipologia:
Versione Editoriale
Dimensione
1.68 MB
Formato
Adobe PDF
|
1.68 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.