The continuous raise of environmental issues by the polymer products has led to the use of eco-friendly basalt as a reinforcement for the composites fabrication. Basalt reinforcement has attractive qualities such as non-toxicity, ease of processing steps, economical, less harmful, and excellent thermal, and mechanical properties. Basalt loading into different polymer matrices is indeed a comparably novel concept that may offer some very intriguing views, which have not yet been fully explored. The ability of mineral fillers such as basalt powder to reduce the polymer portion in polymer goods by retaining their original characteristics hand out to the establishment of a pollution-free ecosystem and the stabilizing of ecological issues. In this context, the current research aims to manufacture and characterize thermoset (i.e., synthetic epoxy, bio-epoxy, unsaturated polyester, and vinyl ester) and thermoplastic (i.e., polylactic acid, bio-based polypropylene, and bio-based high density polyethylene) composites reinforced with the same weight content (i.e., 30%) of basalt powder. These composites were employed for physical, mechanical, wettability (contact angle analysis), morphological, and water absorption investigations. Moreover, basalt powder was subjected to elemental analysis (Energy dispersive X-ray), particle dimensional analysis, and morphological (Scanning Electron Microscopy) observations. The experimental results revealed that the tensile, flexural, and impact strength characteristics of composites were slightly reduced in comparison to neat polymers because of higher reinforcement. Besides, the tensile modulus, flexural modulus, and hardness values were gradually improved due to the filler effect. The increased water absorption is mainly caused by the voids inside of the composites, which create the quintessential environment for moisture to seep into the interface. Differential scanning calorimetry analysis reveals that the filler has successfully maintained the chain relaxation with the reduction of molecular movement and achieved stability as equivalent to a 100% polymer system, despite the incorporation of basalt by reducing the 30 wt% polymers. Except for synthetic epoxy composite, the remaining polymer composites have shown enhanced thermal conductivity values than neat polymers. However, the obtained findings can be considered satisfactory for prospective applications concerning lightness and environmental friendliness.

Jagadeesh P., Rangappa S.M., Fiore V., NathDhakal H., Siengchin S. (2024). Basalt powder based thermoset and thermoplastic composites for lightweight applications. JOURNAL OF POLYMER RESEARCH, 31(9) [10.1007/s10965-024-04103-3].

Basalt powder based thermoset and thermoplastic composites for lightweight applications

Fiore V.;
2024-09-01

Abstract

The continuous raise of environmental issues by the polymer products has led to the use of eco-friendly basalt as a reinforcement for the composites fabrication. Basalt reinforcement has attractive qualities such as non-toxicity, ease of processing steps, economical, less harmful, and excellent thermal, and mechanical properties. Basalt loading into different polymer matrices is indeed a comparably novel concept that may offer some very intriguing views, which have not yet been fully explored. The ability of mineral fillers such as basalt powder to reduce the polymer portion in polymer goods by retaining their original characteristics hand out to the establishment of a pollution-free ecosystem and the stabilizing of ecological issues. In this context, the current research aims to manufacture and characterize thermoset (i.e., synthetic epoxy, bio-epoxy, unsaturated polyester, and vinyl ester) and thermoplastic (i.e., polylactic acid, bio-based polypropylene, and bio-based high density polyethylene) composites reinforced with the same weight content (i.e., 30%) of basalt powder. These composites were employed for physical, mechanical, wettability (contact angle analysis), morphological, and water absorption investigations. Moreover, basalt powder was subjected to elemental analysis (Energy dispersive X-ray), particle dimensional analysis, and morphological (Scanning Electron Microscopy) observations. The experimental results revealed that the tensile, flexural, and impact strength characteristics of composites were slightly reduced in comparison to neat polymers because of higher reinforcement. Besides, the tensile modulus, flexural modulus, and hardness values were gradually improved due to the filler effect. The increased water absorption is mainly caused by the voids inside of the composites, which create the quintessential environment for moisture to seep into the interface. Differential scanning calorimetry analysis reveals that the filler has successfully maintained the chain relaxation with the reduction of molecular movement and achieved stability as equivalent to a 100% polymer system, despite the incorporation of basalt by reducing the 30 wt% polymers. Except for synthetic epoxy composite, the remaining polymer composites have shown enhanced thermal conductivity values than neat polymers. However, the obtained findings can be considered satisfactory for prospective applications concerning lightness and environmental friendliness.
set-2024
Settore ING-IND/22 - Scienza E Tecnologia Dei Materiali
Jagadeesh P., Rangappa S.M., Fiore V., NathDhakal H., Siengchin S. (2024). Basalt powder based thermoset and thermoplastic composites for lightweight applications. JOURNAL OF POLYMER RESEARCH, 31(9) [10.1007/s10965-024-04103-3].
File in questo prodotto:
File Dimensione Formato  
2024_Basalt powder based thermoset and thermoplastic composites for lightweight applications.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 5.16 MB
Formato Adobe PDF
5.16 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/650493
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact