Let Y be a smooth, projective curve of genus g>=1. Let H^0_{d,A}(Y)be the Hurwitz space which parametrizes coverings p:X --> Y of degree d simply branched in n=2e points, such that the monodromy group is S_d and det(P_*O_X/O_Y) is isomorphic to a fixed line bundle A^{-1} of degree e. We prove that when d=3, 4 or 5 and n is sufficiently large (precise bounds are given),these Hurwitz spaces are unirational. If in addition (e,2)=1 (when d=3), (e,6)=1 (when d=4) and (e,10)=1 (when d=5), then these Hurwitz spaces are rational.
Kanev, V. (2013). Unirationality of Hurwitz spaces of coverings of degree <= 5. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013(13), 3006-3052 [doi:10.1093/imrn/rns138].
Unirationality of Hurwitz spaces of coverings of degree <= 5
KANEV, Vassil
2013-01-01
Abstract
Let Y be a smooth, projective curve of genus g>=1. Let H^0_{d,A}(Y)be the Hurwitz space which parametrizes coverings p:X --> Y of degree d simply branched in n=2e points, such that the monodromy group is S_d and det(P_*O_X/O_Y) is isomorphic to a fixed line bundle A^{-1} of degree e. We prove that when d=3, 4 or 5 and n is sufficiently large (precise bounds are given),these Hurwitz spaces are unirational. If in addition (e,2)=1 (when d=3), (e,6)=1 (when d=4) and (e,10)=1 (when d=5), then these Hurwitz spaces are rational.File | Dimensione | Formato | |
---|---|---|---|
imrn.rns138.full.pdf
Solo gestori archvio
Descrizione: Main article
Dimensione
401.17 kB
Formato
Adobe PDF
|
401.17 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.