We consider a stochastic integral equation, whose coe cients are periodic in time. Under a suitable condition we prove the existence of an invariant mesure for this stochastic equation. This invariant mesure is constructed on a Banach space of continuous functions. We study also its application to an epidemiologic model of malaria, which concerns the infected population and the vector population.

Fujita Yashima, H., Tornatore, E., Buccellato, S.M. (2012). Mesure invariante d'une equation integrale stochastique a coefficients periodiques et applications a un modele d'epidemiologie. AFRICA MATHEMATICS ANNALS, 3, 27-44.

Mesure invariante d'une equation integrale stochastique a coefficients periodiques et applications a un modele d'epidemiologie

TORNATORE, Elisabetta;
2012-01-01

Abstract

We consider a stochastic integral equation, whose coe cients are periodic in time. Under a suitable condition we prove the existence of an invariant mesure for this stochastic equation. This invariant mesure is constructed on a Banach space of continuous functions. We study also its application to an epidemiologic model of malaria, which concerns the infected population and the vector population.
Settore MAT/05 - Analisi Matematica
Fujita Yashima, H., Tornatore, E., Buccellato, S.M. (2012). Mesure invariante d'une equation integrale stochastique a coefficients periodiques et applications a un modele d'epidemiologie. AFRICA MATHEMATICS ANNALS, 3, 27-44.
File in questo prodotto:
File Dimensione Formato  
Mesure invariante d'une equation integrale stochastique a coefficients periodiques et applications a un modele d'epidemiologie.pdf

accesso aperto

Dimensione 458.56 kB
Formato Adobe PDF
458.56 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/64919
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact