We prove boundedness, Holder continuity, Harnack inequality results for local quasiminima to elliptic double phase problems of p-Laplace type in the general context of metric measure spaces. The proofs follow a variational approach and they are based on the De Giorgi method, a careful phase analysis and estimates in the intrinsic geometries.
Nastasi, A., Pacchiano Camacho, C. (2024). Regularity results for quasiminima of a class of double phase problems. MATHEMATISCHE ANNALEN [10.1007/s00208-024-02947-0].
Regularity results for quasiminima of a class of double phase problems
Nastasi, AntonellaCo-primo
;
2024-07-23
Abstract
We prove boundedness, Holder continuity, Harnack inequality results for local quasiminima to elliptic double phase problems of p-Laplace type in the general context of metric measure spaces. The proofs follow a variational approach and they are based on the De Giorgi method, a careful phase analysis and estimates in the intrinsic geometries.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
s00208-024-02947-0.pdf
Solo gestori archvio
Tipologia:
Versione Editoriale
Dimensione
673.91 kB
Formato
Adobe PDF
|
673.91 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.