We prove boundedness, Holder continuity, Harnack inequality results for local quasiminima to elliptic double phase problems of p-Laplace type in the general context of metric measure spaces. The proofs follow a variational approach and they are based on the De Giorgi method, a careful phase analysis and estimates in the intrinsic geometries.

Nastasi, A., Pacchiano Camacho, C. (2024). Regularity results for quasiminima of a class of double phase problems. MATHEMATISCHE ANNALEN [10.1007/s00208-024-02947-0].

Regularity results for quasiminima of a class of double phase problems

Nastasi, Antonella
Co-primo
;
2024-07-23

Abstract

We prove boundedness, Holder continuity, Harnack inequality results for local quasiminima to elliptic double phase problems of p-Laplace type in the general context of metric measure spaces. The proofs follow a variational approach and they are based on the De Giorgi method, a careful phase analysis and estimates in the intrinsic geometries.
23-lug-2024
Nastasi, A., Pacchiano Camacho, C. (2024). Regularity results for quasiminima of a class of double phase problems. MATHEMATISCHE ANNALEN [10.1007/s00208-024-02947-0].
File in questo prodotto:
File Dimensione Formato  
s00208-024-02947-0.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 673.91 kB
Formato Adobe PDF
673.91 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/649034
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact