Motif patterns consisting of sequences of intermixed solid and don't-care characters have been introduced and studied in connection with pattern discovery problems of computational biology and other domains. In order to alleviate the exponential growth of such motifs, notions of maximal saturation and irredundancy have been formulated, whereby more or less compact subsets of the set of all motifs can be extracted, that are capable of expressing all others by suitable combinations. In this paper, we introduce the notion of maximal irredundant motifs in a two-dimensional array and develop initial properties and a combinatorial argument that poses a linear bound on the total number of such motifs. The remainder of the paper presents approaches to the discovery of irredundant motifs both by offline and incremental algorithms.
Apostolico, A., Parida, L., Rombo, S.E. (2008). Motif Patterns in 2D. THEORETICAL COMPUTER SCIENCE, 390(1), 40-55 [http://www.sciencedirect.com/science/article/pii/S0304397507007645].
Motif Patterns in 2D
ROMBO, Simona Ester
2008-01-01
Abstract
Motif patterns consisting of sequences of intermixed solid and don't-care characters have been introduced and studied in connection with pattern discovery problems of computational biology and other domains. In order to alleviate the exponential growth of such motifs, notions of maximal saturation and irredundancy have been formulated, whereby more or less compact subsets of the set of all motifs can be extracted, that are capable of expressing all others by suitable combinations. In this paper, we introduce the notion of maximal irredundant motifs in a two-dimensional array and develop initial properties and a combinatorial argument that poses a linear bound on the total number of such motifs. The remainder of the paper presents approaches to the discovery of irredundant motifs both by offline and incremental algorithms.File | Dimensione | Formato | |
---|---|---|---|
tcs08.pdf
Solo gestori archvio
Dimensione
652.17 kB
Formato
Adobe PDF
|
652.17 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.