We prove a multiplicity result for a class of strongly indefinite nonlinear second order asymptotically linear systems with Dirichlet boundary conditions. The key idea for the proof is to bring together the classical shooting method and the Maslov index of the linear Hamiltonian systems associated to the asymptotic limits of the given nonlinearity
Capietto A, Dalbono F, Portaluri A (2009). A multiplicity result for a class of strongly indefinite asymptotically linear second order systems. NONLINEAR ANALYSIS, 72(6), 2874-2890 [10.1016/j.na.2009.11.032].
A multiplicity result for a class of strongly indefinite asymptotically linear second order systems
DALBONO, Francesca;
2009-01-01
Abstract
We prove a multiplicity result for a class of strongly indefinite nonlinear second order asymptotically linear systems with Dirichlet boundary conditions. The key idea for the proof is to bring together the classical shooting method and the Maslov index of the linear Hamiltonian systems associated to the asymptotic limits of the given nonlinearityFile in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
CaDaPo10.pdf
Solo gestori archvio
Descrizione: Articolo principale
Tipologia:
Versione Editoriale
Dimensione
889.37 kB
Formato
Adobe PDF
|
889.37 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.