A structure theorem is given for n-dimensional smooth subvarieties of the Grassmannian G(1, N), with N ≥ n + 3, that can be isomorphically projected to G(1, n + 1). A complete classification in the cases N = 2n + 1 and N = 2n follows, as a corollary
Arrondo, E., Sierra, J., & Ugaglia, L. (2005). Classification of n-dimensional subvarieties of G(1, 2n) that can be projected to G(1, n + 1). BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 37(5), 673-682.
Data di pubblicazione: | 2005 |
Titolo: | Classification of n-dimensional subvarieties of G(1, 2n) that can be projected to G(1, n + 1) |
Autori: | |
Citazione: | Arrondo, E., Sierra, J., & Ugaglia, L. (2005). Classification of n-dimensional subvarieties of G(1, 2n) that can be projected to G(1, n + 1). BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 37(5), 673-682. |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1112/S002460930500473X |
Abstract: | A structure theorem is given for n-dimensional smooth subvarieties of the Grassmannian G(1, N), with N ≥ n + 3, that can be isomorphically projected to G(1, n + 1). A complete classification in the cases N = 2n + 1 and N = 2n follows, as a corollary |
Settore Scientifico Disciplinare: | Settore MAT/03 - Geometria |
Appare nelle tipologie: | 1.01 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
asu.pdf | Main article | N/A | Administrator Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.