A structure theorem is given for n-dimensional smooth subvarieties of the Grassmannian G(1, N), with N ≥ n + 3, that can be isomorphically projected to G(1, n + 1). A complete classification in the cases N = 2n + 1 and N = 2n follows, as a corollary
Arrondo, E., Sierra, J.C., Ugaglia, L. (2005). Classification of n-dimensional subvarieties of G(1, 2n) that can be projected to G(1, n + 1). BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 37(5), 673-682 [10.1112/S002460930500473X].
Classification of n-dimensional subvarieties of G(1, 2n) that can be projected to G(1, n + 1)
UGAGLIA, Luca
2005-01-01
Abstract
A structure theorem is given for n-dimensional smooth subvarieties of the Grassmannian G(1, N), with N ≥ n + 3, that can be isomorphically projected to G(1, n + 1). A complete classification in the cases N = 2n + 1 and N = 2n follows, as a corollaryFile in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
asu.pdf
Solo gestori archvio
Descrizione: Main article
Dimensione
151.87 kB
Formato
Adobe PDF
|
151.87 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.