The influence of hydrological dynamics on vegetational biodiversity and structuring of wetland environments is of growing interest as wetlands are modified by human alteration and the increasing threat from climate change. Hydrology has long been considered a driving force in shaping wetland communities as the frequency of inundation along with the duration and depth of flooding are key determinants of wetland structure. We attempt to link hydrological dynamics with vegetational distribution and species richness across Everglades National Park(ENP) using two publicly available datasets. The first, the Everglades Depth Estimation Network (EDEN),is a water-surface model which determines the median daily measure of water level across a 400mX400m grid over seven years of measurement. The second is a vegetation map and classification system at the 1:15,000 scale which categorizes vegetation within the Everglades into 79 community types. From these data, we have studied the probabilistic structure of the frequency, duration, and depth of hydroperiods. Preliminary results indicate that the percentage of time a location is inundated is a principal structuring variable with individual communities responding differently. For example, sawgrass appears to be more of a generalist community as it is found across a wide range of time inundated percentages while spike rush has a more restricted distribution and favors wetter environments disproportionately more than predicted at random. Further, the diversity of vegetation communities (e.g. a measure of biodiversity) found across a hydrologic variable does not necessarily match the distribution function for that variable on the landscape. For instance, the number of communities does not differ across the percentage of time inundated. Different measures of vegetation biodiversity such as the local number of community types are also studied at different spatial scales with some characteristics, like the slope of the semi-logarithmic relation between rank and occupancy, found to be robust to scale changes. The ENP offers an expansive natural environment in which to study how vegetational dynamics and community composition are affected by hydrologic variables from the small scale (at the individual community level) to the large(biodiversity measures at differing spatial scales).

Todd, J., Pumo, D., Azaele, S., Muneepeerakul, R., Miralles-Wilhelm, F.R., Rinaldo, A., et al. (2009). Hydrological drivers of wetland vegetational biodiversity patterns within Everglades National Park, Florida. In American Geophysical Union, Fall Meeting 2009 [2009AGUFM.B23B0373T].

Hydrological drivers of wetland vegetational biodiversity patterns within Everglades National Park, Florida

PUMO, Dario;
2009-01-01

Abstract

The influence of hydrological dynamics on vegetational biodiversity and structuring of wetland environments is of growing interest as wetlands are modified by human alteration and the increasing threat from climate change. Hydrology has long been considered a driving force in shaping wetland communities as the frequency of inundation along with the duration and depth of flooding are key determinants of wetland structure. We attempt to link hydrological dynamics with vegetational distribution and species richness across Everglades National Park(ENP) using two publicly available datasets. The first, the Everglades Depth Estimation Network (EDEN),is a water-surface model which determines the median daily measure of water level across a 400mX400m grid over seven years of measurement. The second is a vegetation map and classification system at the 1:15,000 scale which categorizes vegetation within the Everglades into 79 community types. From these data, we have studied the probabilistic structure of the frequency, duration, and depth of hydroperiods. Preliminary results indicate that the percentage of time a location is inundated is a principal structuring variable with individual communities responding differently. For example, sawgrass appears to be more of a generalist community as it is found across a wide range of time inundated percentages while spike rush has a more restricted distribution and favors wetter environments disproportionately more than predicted at random. Further, the diversity of vegetation communities (e.g. a measure of biodiversity) found across a hydrologic variable does not necessarily match the distribution function for that variable on the landscape. For instance, the number of communities does not differ across the percentage of time inundated. Different measures of vegetation biodiversity such as the local number of community types are also studied at different spatial scales with some characteristics, like the slope of the semi-logarithmic relation between rank and occupancy, found to be robust to scale changes. The ENP offers an expansive natural environment in which to study how vegetational dynamics and community composition are affected by hydrologic variables from the small scale (at the individual community level) to the large(biodiversity measures at differing spatial scales).
dic-2009
American Geophysical Union, Fall Meeting 2009
San Francisco, California, USA
14-18 Dicembre 2009
AGU 2009
2009
00
http://adsabs.harvard.edu//abs/2009AGUFM.B23B0373T
Todd, J., Pumo, D., Azaele, S., Muneepeerakul, R., Miralles-Wilhelm, F.R., Rinaldo, A., et al. (2009). Hydrological drivers of wetland vegetational biodiversity patterns within Everglades National Park, Florida. In American Geophysical Union, Fall Meeting 2009 [2009AGUFM.B23B0373T].
Proceedings (atti dei congressi)
Todd, J; Pumo, D; Azaele, S; Muneepeerakul, R; Miralles-Wilhelm, FR; Rinaldo, A; Rodriguez-Iturbe, I
File in questo prodotto:
File Dimensione Formato  
n10.pdf

Solo gestori archvio

Dimensione 108.92 kB
Formato Adobe PDF
108.92 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/64533
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact