Let G be a finite group and A a G-graded algebra over a field of characteristic zero. When A is a PI-algebra, the graded codimensions of A are exponentially bounded and one can study the corresponding graded cocharacters via the representation theory of products of symmetric groups. Here we characterize in two different ways when the corresponding multiplicities are bounded by a constant. © 2012 Elsevier B.V.

Cirrito, A., Giambruno, A. (2013). Group graded algebras and multiplicities bounded by a constant. JOURNAL OF PURE AND APPLIED ALGEBRA, 217(2), 259-268 [10.1016/j.jpaa.2012.06.005].

Group graded algebras and multiplicities bounded by a constant

CIRRITO, Alessio
Primo
;
GIAMBRUNO, Antonino
Ultimo
2013-01-01

Abstract

Let G be a finite group and A a G-graded algebra over a field of characteristic zero. When A is a PI-algebra, the graded codimensions of A are exponentially bounded and one can study the corresponding graded cocharacters via the representation theory of products of symmetric groups. Here we characterize in two different ways when the corresponding multiplicities are bounded by a constant. © 2012 Elsevier B.V.
2013
Cirrito, A., Giambruno, A. (2013). Group graded algebras and multiplicities bounded by a constant. JOURNAL OF PURE AND APPLIED ALGEBRA, 217(2), 259-268 [10.1016/j.jpaa.2012.06.005].
File in questo prodotto:
File Dimensione Formato  
cirrito-giambruno.pdf

Solo gestori archvio

Dimensione 275.27 kB
Formato Adobe PDF
275.27 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/64525
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact