Floquet engineering has recently emerged as a technique for controlling material properties with light. Floquet phases can be probed with time- and angle-resolved photoelectron spectroscopy (Tr-ARPES), providing direct access to the laser-dressed electronic bands. Applications of Tr-ARPES to date focused on observing the Floquet-Bloch bands themselves, and their build-up and dephasing on sub-laser-cycle timescales. However, momentum and energy resolved sub-laser-cycle dynamics between Floquet bands have not been analyzed. Given that Floquet theory strictly applies in time-periodic conditions, the notion of resolving sub-laser-cycle dynamics between Floquet states seems contradictory-it requires probe pulse durations below a laser cycle that inherently cannot discern the time-periodic nature of the light-matter system. Here we propose to employ attosecond pulse train probes with the same temporal periodicity as the Floquet-dressing pump pulse, allowing both attosecond sub-laser-cycle resolution and a proper projection of Tr-ARPES spectra on the Floquet-Bloch bands. We formulate and employ this approach in ab-initio calculations in light-driven graphene. Our calculations predict significant sub-laser-cycle dynamics occurring within the Floquet phase with the majority of electrons moving within and in-between Floquet bands, and a small portion residing and moving outside of them in what we denote as 'non-Floquet' bands. We establish that non-Floquet bands arise from the pump laser envelope that induces non-adiabatic electronic excitations during the pulse turn-on and turn-off. By performing calculations in systems with poly-chromatic pumps we also show that Floquet states are not formed on a sub-laser-cycle level. This work indicates that the Floquet-Bloch states are generally not a complete basis set for sub-laser-cycle dynamics in steady-state phases of matter.

Neufeld O., Hübener H., De Giovannini U., Rubio A. (2024). Tracking electron motion within and outside of Floquet bands from attosecond pulse trains in time-resolved ARPES. JOURNAL OF PHYSICS. CONDENSED MATTER, 36(22) [10.1088/1361-648X/ad2a0e].

Tracking electron motion within and outside of Floquet bands from attosecond pulse trains in time-resolved ARPES

De Giovannini U.;Rubio A.
2024-06-05

Abstract

Floquet engineering has recently emerged as a technique for controlling material properties with light. Floquet phases can be probed with time- and angle-resolved photoelectron spectroscopy (Tr-ARPES), providing direct access to the laser-dressed electronic bands. Applications of Tr-ARPES to date focused on observing the Floquet-Bloch bands themselves, and their build-up and dephasing on sub-laser-cycle timescales. However, momentum and energy resolved sub-laser-cycle dynamics between Floquet bands have not been analyzed. Given that Floquet theory strictly applies in time-periodic conditions, the notion of resolving sub-laser-cycle dynamics between Floquet states seems contradictory-it requires probe pulse durations below a laser cycle that inherently cannot discern the time-periodic nature of the light-matter system. Here we propose to employ attosecond pulse train probes with the same temporal periodicity as the Floquet-dressing pump pulse, allowing both attosecond sub-laser-cycle resolution and a proper projection of Tr-ARPES spectra on the Floquet-Bloch bands. We formulate and employ this approach in ab-initio calculations in light-driven graphene. Our calculations predict significant sub-laser-cycle dynamics occurring within the Floquet phase with the majority of electrons moving within and in-between Floquet bands, and a small portion residing and moving outside of them in what we denote as 'non-Floquet' bands. We establish that non-Floquet bands arise from the pump laser envelope that induces non-adiabatic electronic excitations during the pulse turn-on and turn-off. By performing calculations in systems with poly-chromatic pumps we also show that Floquet states are not formed on a sub-laser-cycle level. This work indicates that the Floquet-Bloch states are generally not a complete basis set for sub-laser-cycle dynamics in steady-state phases of matter.
5-giu-2024
Neufeld O., Hübener H., De Giovannini U., Rubio A. (2024). Tracking electron motion within and outside of Floquet bands from attosecond pulse trains in time-resolved ARPES. JOURNAL OF PHYSICS. CONDENSED MATTER, 36(22) [10.1088/1361-648X/ad2a0e].
File in questo prodotto:
File Dimensione Formato  
Tracking electron motion within and outside of Floquet bands from attosecond pulse trains in time-resolved ARPES-.pdf

accesso aperto

Tipologia: Versione Editoriale
Dimensione 3.2 MB
Formato Adobe PDF
3.2 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/643013
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact