The growing population in large cities is creating traffic management issues. The metropolis road network management also requires constant monitoring, timely expansion, and modernization. In order to handle road traffic issues, an intelligent traffic management solution is required. Intelligent monitoring of traffic involves the detection and tracking of vehicles on roads and highways. There are various sensors for collecting motion information, such as transport video detectors, microwave radars, infrared sensors, ultrasonic sensors, passive acoustic sensors, and others. In this paper, we present an intelligent video surveillance-based vehicle tracking system. The proposed system uses a combination of the neural network, image-based tracking, and You Only Look Once (YOLOv3) to track vehicles. We train the proposed system with different datasets. Moreover, we use real video sequences of road traffic to test the performance of the proposed system. The evaluation outcomes showed that the proposed system can detect, track, and count the vehicles with acceptable results in changing scenarios.

Mohammed A. A. Al-qaness, Aaqif Afzaal Abbasi, Hong Fan, Rehab Ali Ibrahim, Saeed H. Alsamhi, Ammar Hawbani (2021). An improved YOLO-based road traffic monitoring system. COMPUTING.

An improved YOLO-based road traffic monitoring system

Aaqif Afzaal Abbasi
;
2021-01-01

Abstract

The growing population in large cities is creating traffic management issues. The metropolis road network management also requires constant monitoring, timely expansion, and modernization. In order to handle road traffic issues, an intelligent traffic management solution is required. Intelligent monitoring of traffic involves the detection and tracking of vehicles on roads and highways. There are various sensors for collecting motion information, such as transport video detectors, microwave radars, infrared sensors, ultrasonic sensors, passive acoustic sensors, and others. In this paper, we present an intelligent video surveillance-based vehicle tracking system. The proposed system uses a combination of the neural network, image-based tracking, and You Only Look Once (YOLOv3) to track vehicles. We train the proposed system with different datasets. Moreover, we use real video sequences of road traffic to test the performance of the proposed system. The evaluation outcomes showed that the proposed system can detect, track, and count the vehicles with acceptable results in changing scenarios.
2021
Mohammed A. A. Al-qaness, Aaqif Afzaal Abbasi, Hong Fan, Rehab Ali Ibrahim, Saeed H. Alsamhi, Ammar Hawbani (2021). An improved YOLO-based road traffic monitoring system. COMPUTING.
File in questo prodotto:
File Dimensione Formato  
An improved YOLO-based road traffic monitoring system.pdf

accesso aperto

Tipologia: Versione Editoriale
Dimensione 2.13 MB
Formato Adobe PDF
2.13 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/641574
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact