The inflammatory response that marks Alzheimer’s disease (neuroinflammation) is considered a double-edged sword. Microglia have been shown to play a protective role at the beginning of the disease. Still, persistent harmful stimuli further activate microglia, inducing an exacerbating inflammatory process which impairs β-amyloid peptide clearance capability and leads to neurotoxicity and neurodegeneration. Moreover, microglia also appear to be closely involved in the spread of tau pathology. Soluble TREM2 also represents a crucial player in the neuroinflammatory processes. Elevated levels of TREM2 in cerebrospinal fluid have been associated with increased amyloid plaque burden, neurodegeneration, and cognitive decline in individuals with Alzheimer’s disease. Understanding the intricate relationship between innate immunity and Alzheimer’s disease will be a promising strategy for future advancements in diagnosis and new therapeutic interventions targeting innate immunity, by modulating its activity. Still, additional and more robust studies are needed to translate these findings into effective treatments. In this review, we focus on the role of cells (microglia, astrocytes, and oligodendrocytes) and molecules (TREM2, tau, and β-amyloid) of the innate immune system in the pathogenesis of Alzheimer’s disease and their possible exploitation as disease biomarkers and targets of therapeutical approaches.

Bartolo Tamburini, G.D.B. (2023). Emerging Roles of Cells and Molecules of Innate Immunity in Alzheimer's Disease [10.3390/ijms241511922].

Emerging Roles of Cells and Molecules of Innate Immunity in Alzheimer's Disease

Bartolo Tamburini;Giusto Davide Badami;Marco Pio La Manna;Mojtaba Shekarkar Azgomi;Nadia Caccamo
;
Francesco Dieli
2023-06-29

Abstract

The inflammatory response that marks Alzheimer’s disease (neuroinflammation) is considered a double-edged sword. Microglia have been shown to play a protective role at the beginning of the disease. Still, persistent harmful stimuli further activate microglia, inducing an exacerbating inflammatory process which impairs β-amyloid peptide clearance capability and leads to neurotoxicity and neurodegeneration. Moreover, microglia also appear to be closely involved in the spread of tau pathology. Soluble TREM2 also represents a crucial player in the neuroinflammatory processes. Elevated levels of TREM2 in cerebrospinal fluid have been associated with increased amyloid plaque burden, neurodegeneration, and cognitive decline in individuals with Alzheimer’s disease. Understanding the intricate relationship between innate immunity and Alzheimer’s disease will be a promising strategy for future advancements in diagnosis and new therapeutic interventions targeting innate immunity, by modulating its activity. Still, additional and more robust studies are needed to translate these findings into effective treatments. In this review, we focus on the role of cells (microglia, astrocytes, and oligodendrocytes) and molecules (TREM2, tau, and β-amyloid) of the innate immune system in the pathogenesis of Alzheimer’s disease and their possible exploitation as disease biomarkers and targets of therapeutical approaches.
29-giu-2023
Bartolo Tamburini, G.D.B. (2023). Emerging Roles of Cells and Molecules of Innate Immunity in Alzheimer's Disease [10.3390/ijms241511922].
File in questo prodotto:
File Dimensione Formato  
Alzheimer.pdf

accesso aperto

Descrizione: Review
Tipologia: Versione Editoriale
Dimensione 2.02 MB
Formato Adobe PDF
2.02 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/637418
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 16
social impact