Carbon Nitride and its polymorphs have recently gained large interests for their huge properties and applications in different fields, from lighting to photocatalysis. Further, several attempts were recently devoted to tune and control its optical and electrical properties. In this report we analyze phenyl modified Carbon Nitride structures obtained by simple thermal polymerization at different temperatures (250-400 degrees C) of the starting precursor: 2,4-diamino-6-phenyl-1,3,5-triazine. A multi-technique experimental data (XRD patterns, Raman, TGA and DTG, steady- time and time resolved Luminescence, Photoluminescence Excitation spectra, Reflectivity spectra) was applied to analyze the relationship between structural and optical properties and to give more insight on the effect of synthesis procedure on the final polymer. The optical properties evidenced an interesting shift towards the visible region of the absorption spectrum of the phenyl modified g-C3N4 polymer that, associated with the high optical quantum yield (about 60%) and to a broad emission in the green-red spectral region, makes the samples very suitable for lighting applications. Indeed, we report a first prototype of white LED emission by assembly of a commercial blue LED and the Phenyl modified g-C3N4 powders as phosphor, verifying the structural and optical stability over about 10,000 working hours.
Porcu, S., Roppolo, I., Salaun, M., Sarais, G., Barbarossa, S., Casula, M.F., et al. (2020). Come to light: Detailed analysis of thermally treated Phenyl modified Carbon Nitride Polymorphs for bright phosphors in lighting applications. APPLIED SURFACE SCIENCE, 504 [10.1016/j.apsusc.2019.144330].
Come to light: Detailed analysis of thermally treated Phenyl modified Carbon Nitride Polymorphs for bright phosphors in lighting applications
Barbarossa, Simone;
2020-02-01
Abstract
Carbon Nitride and its polymorphs have recently gained large interests for their huge properties and applications in different fields, from lighting to photocatalysis. Further, several attempts were recently devoted to tune and control its optical and electrical properties. In this report we analyze phenyl modified Carbon Nitride structures obtained by simple thermal polymerization at different temperatures (250-400 degrees C) of the starting precursor: 2,4-diamino-6-phenyl-1,3,5-triazine. A multi-technique experimental data (XRD patterns, Raman, TGA and DTG, steady- time and time resolved Luminescence, Photoluminescence Excitation spectra, Reflectivity spectra) was applied to analyze the relationship between structural and optical properties and to give more insight on the effect of synthesis procedure on the final polymer. The optical properties evidenced an interesting shift towards the visible region of the absorption spectrum of the phenyl modified g-C3N4 polymer that, associated with the high optical quantum yield (about 60%) and to a broad emission in the green-red spectral region, makes the samples very suitable for lighting applications. Indeed, we report a first prototype of white LED emission by assembly of a commercial blue LED and the Phenyl modified g-C3N4 powders as phosphor, verifying the structural and optical stability over about 10,000 working hours.File | Dimensione | Formato | |
---|---|---|---|
Porcu et al 2020 JAPSS.pdf
Solo gestori archvio
Tipologia:
Versione Editoriale
Dimensione
1.11 MB
Formato
Adobe PDF
|
1.11 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1-s2.0-S0169433219331460-mmc1.docx
Solo gestori archvio
Descrizione: Supporting information
Tipologia:
Versione Editoriale
Dimensione
723.37 kB
Formato
Microsoft Word XML
|
723.37 kB | Microsoft Word XML | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.