We investigate the problem of speaker independent acoustic-to-articulatory inversion (AAI) in noisy conditions within the deep neural network (DNN) framework. In contrast with recent results in the literature, we argue that a DNN vector-to-vector regression front-end for speech enhancement (DNN-SE) can play a key role in AAI when used to enhance spectral features prior to AAI back-end processing. We experimented with single- and multi-task training strategies for the DNN-SE block finding the latter to be beneficial to AAI. Furthermore, we show that coupling DNN-SE producing enhanced speech features with an AAI trained on clean speech outperforms a multi-condition AAI (AAI-MC) when tested on noisy speech. We observe a 15% relative improvement in the Pearson's correlation coefficient (PCC) between our system and AAI-MC at 0 dB signal-to-noise ratio on the Haskins corpus. Our approach also compares favourably against using a conventional DSP approach to speech enhancement (MMSE with IMCRA) in the front-end. Finally, we demonstrate the utility of articulatory inversion in a downstream speech application. We report significant WER improvements on an automatic speech recognition task in mismatched conditions based on the Wall Street Journal corpus (WSJ) when leveraging articulatory information estimated by AAI-MC system over spectral-alone speech features.

Shahrebabaki, A.S., Salvi, G., Svendsen, T., Siniscalchi, S.M. (2022). Acoustic-to-Articulatory Mapping With Joint Optimization of Deep Speech Enhancement and Articulatory Inversion Models. IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, 30, 135-147 [10.1109/TASLP.2021.3133218].

Acoustic-to-Articulatory Mapping With Joint Optimization of Deep Speech Enhancement and Articulatory Inversion Models

Siniscalchi, Sabato Marco
Ultimo
Formal Analysis
2022-01-01

Abstract

We investigate the problem of speaker independent acoustic-to-articulatory inversion (AAI) in noisy conditions within the deep neural network (DNN) framework. In contrast with recent results in the literature, we argue that a DNN vector-to-vector regression front-end for speech enhancement (DNN-SE) can play a key role in AAI when used to enhance spectral features prior to AAI back-end processing. We experimented with single- and multi-task training strategies for the DNN-SE block finding the latter to be beneficial to AAI. Furthermore, we show that coupling DNN-SE producing enhanced speech features with an AAI trained on clean speech outperforms a multi-condition AAI (AAI-MC) when tested on noisy speech. We observe a 15% relative improvement in the Pearson's correlation coefficient (PCC) between our system and AAI-MC at 0 dB signal-to-noise ratio on the Haskins corpus. Our approach also compares favourably against using a conventional DSP approach to speech enhancement (MMSE with IMCRA) in the front-end. Finally, we demonstrate the utility of articulatory inversion in a downstream speech application. We report significant WER improvements on an automatic speech recognition task in mismatched conditions based on the Wall Street Journal corpus (WSJ) when leveraging articulatory information estimated by AAI-MC system over spectral-alone speech features.
2022
Shahrebabaki, A.S., Salvi, G., Svendsen, T., Siniscalchi, S.M. (2022). Acoustic-to-Articulatory Mapping With Joint Optimization of Deep Speech Enhancement and Articulatory Inversion Models. IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, 30, 135-147 [10.1109/TASLP.2021.3133218].
File in questo prodotto:
File Dimensione Formato  
Acoustic-to-Articulatory_Mapping_With_Joint_Optimization_of_Deep_Speech_Enhancement_and_Articulatory_Inversion_Models.pdf

accesso aperto

Tipologia: Versione Editoriale
Dimensione 2.57 MB
Formato Adobe PDF
2.57 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/636666
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 7
social impact