For an (imaginary) hyperelliptic curve H of genus g, with a Weierstrass point O, taken as the point at infinity, we determine a basis of the Riemann-Roch space L( D + mO), where D is of degree zero, directly from the Mumford representation of D. This provides in turn a generating matrix of a Goppa code.
Falcone, G., Filippone, G. (2024). Mumford representation and Riemann-Roch space of a divisor on a hyperelliptic curve. CRYPTOGRAPHY AND COMMUNICATIONS [10.1007/s12095-024-00713-2].
Mumford representation and Riemann-Roch space of a divisor on a hyperelliptic curve
Falcone, Giovanni;Filippone, Giuseppe
2024-04-10
Abstract
For an (imaginary) hyperelliptic curve H of genus g, with a Weierstrass point O, taken as the point at infinity, we determine a basis of the Riemann-Roch space L( D + mO), where D is of degree zero, directly from the Mumford representation of D. This provides in turn a generating matrix of a Goppa code.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
s12095-024-00713-2.pdf
accesso aperto
Descrizione: Articolo OA
Tipologia:
Versione Editoriale
Dimensione
295.87 kB
Formato
Adobe PDF
|
295.87 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.