In this paper we study the isotopism classes of two-step nilpotent algebras. We show that every nilpotent Leibniz algebra g with dim[g,g]=1 is isotopic to the Heisenberg Lie algebra or to the Heisenberg algebra l^J1, where J1 is the n × n Jordan block of eigenvalue 1. We also prove that two such algebras are isotopic if and only if the Lie racks integrating them are isotopic. This gives the classification of Lie racks whose tangent space at the unit element is a nilpotent Leibniz algebra with one-dimensional commutator ideal. Eventually, we introduce new isotopism invariants for Leibniz algebras and Lie racks.
La Rosa, G., Mancini, M., Nagy, G.P. (2024). Isotopisms of nilpotent Leibniz algebras and Lie racks. COMMUNICATIONS IN ALGEBRA, 52(9), 3812-3825 [10.1080/00927872.2024.2330686].
Isotopisms of nilpotent Leibniz algebras and Lie racks
La Rosa, Gianmarco;Mancini, Manuel
;
2024-01-01
Abstract
In this paper we study the isotopism classes of two-step nilpotent algebras. We show that every nilpotent Leibniz algebra g with dim[g,g]=1 is isotopic to the Heisenberg Lie algebra or to the Heisenberg algebra l^J1, where J1 is the n × n Jordan block of eigenvalue 1. We also prove that two such algebras are isotopic if and only if the Lie racks integrating them are isotopic. This gives the classification of Lie racks whose tangent space at the unit element is a nilpotent Leibniz algebra with one-dimensional commutator ideal. Eventually, we introduce new isotopism invariants for Leibniz algebras and Lie racks.File | Dimensione | Formato | |
---|---|---|---|
Isotopisms of nilpotent Leibniz algebras and Lie racks.pdf
Solo gestori archvio
Descrizione: Articolo principale
Tipologia:
Versione Editoriale
Dimensione
1.69 MB
Formato
Adobe PDF
|
1.69 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.