In this paper we study the isotopism classes of two-step nilpotent algebras. We show that every nilpotent Leibniz algebra g with dim[g,g]=1 is isotopic to the Heisenberg Lie algebra or to the Heisenberg algebra l^J1, where J1 is the n × n Jordan block of eigenvalue 1. We also prove that two such algebras are isotopic if and only if the Lie racks integrating them are isotopic. This gives the classification of Lie racks whose tangent space at the unit element is a nilpotent Leibniz algebra with one-dimensional commutator ideal. Eventually, we introduce new isotopism invariants for Leibniz algebras and Lie racks.

La Rosa, G., Mancini, M., Nagy, G.P. (2024). Isotopisms of nilpotent Leibniz algebras and Lie racks. COMMUNICATIONS IN ALGEBRA, 52(9), 3812-3825 [10.1080/00927872.2024.2330686].

Isotopisms of nilpotent Leibniz algebras and Lie racks

La Rosa, Gianmarco;Mancini, Manuel
;
2024-01-01

Abstract

In this paper we study the isotopism classes of two-step nilpotent algebras. We show that every nilpotent Leibniz algebra g with dim[g,g]=1 is isotopic to the Heisenberg Lie algebra or to the Heisenberg algebra l^J1, where J1 is the n × n Jordan block of eigenvalue 1. We also prove that two such algebras are isotopic if and only if the Lie racks integrating them are isotopic. This gives the classification of Lie racks whose tangent space at the unit element is a nilpotent Leibniz algebra with one-dimensional commutator ideal. Eventually, we introduce new isotopism invariants for Leibniz algebras and Lie racks.
2024
La Rosa, G., Mancini, M., Nagy, G.P. (2024). Isotopisms of nilpotent Leibniz algebras and Lie racks. COMMUNICATIONS IN ALGEBRA, 52(9), 3812-3825 [10.1080/00927872.2024.2330686].
File in questo prodotto:
File Dimensione Formato  
Isotopisms of nilpotent Leibniz algebras and Lie racks.pdf

Solo gestori archvio

Descrizione: Articolo principale
Tipologia: Versione Editoriale
Dimensione 1.69 MB
Formato Adobe PDF
1.69 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/632033
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact