Background and aims: The anorexigenic glucagon-like peptide (GLP)-2 is produced by intestinal L cells and released in response to food intake. It affects intestinal function involving G-protein-coupled receptors. To verify whether GLP-2 acts as a cardiac modulator in mammals, we analysed, in the rat heart, the expression of GLP-2 receptors and the myocardial and coronary responses to GLP-2. Methods and results: GLP-2 receptors were detected on ventricular extracts by quantitative real-time polymerase chain reaction (Q-RT-PCR) and Western blotting. Cardiac GLP-2 effects were analysed on Langendorff perfused hearts. Intracellular GLP-2 signalling was investigated on Langendorff perfused hearts and by Western blotting and enzyme-linked immunosorbent assay (ELISA) on ventricular extracts. By immunoblotting and Q-RT-PCR, we revealed the expression of ventricular GLP-2 receptors. Perfusion analyses showed that GLP-2 induces positive inotropism at low concentration (0.001 nM), and negative inotropism and lusitropism from 0.1 nM. It dose-dependently constricts coronaries. The negative effects of GLP-2 were independent from GLP-1 receptors, being unaffected by exendin-3 (9-39) amide. GLP-2-dependent negative action involves Gi/o proteins, associates with a reduction of intracellular cyclic adenosine monophosphate (cAMP), an increase in extracellular signal regulated kinases 1 and 2 (ERK1/2) and a decrease in phospholamban phosphorylation, but is independent from endothelial nitric oxide synthase (eNOS) and protein kinase G (PKG). Finally, GLP-2 competitively antagonised b-adrenergic stimulation. Conclusions: For the first time, to our knowledge, we found that: (1) the rat heart expresses functional GLP-2 receptors; (2) GLP-2 acts on both myocardium and coronaries, negatively modulating both basal and b-adrenergic stimulated cardiac performance; and (3) GLP-2 effects are mediated by G-proteins and involve ERK1/2.
Angelone, T., Filice, E., Quintieri, A.M., Imbrogno, S., Amodio, N., Pasqua, T., et al. (2012). Receptor identification and physiological characterisation of glucagon-like peptide-2 in the rat heart. NMCD. NUTRITION METABOLISM AND CARDIOVASCULAR DISEASES, 22, 486-494 [10.1016/j.numecd.2010.07.014].
Receptor identification and physiological characterisation of glucagon-like peptide-2 in the rat heart.
MULE', Flavia;
2012-01-01
Abstract
Background and aims: The anorexigenic glucagon-like peptide (GLP)-2 is produced by intestinal L cells and released in response to food intake. It affects intestinal function involving G-protein-coupled receptors. To verify whether GLP-2 acts as a cardiac modulator in mammals, we analysed, in the rat heart, the expression of GLP-2 receptors and the myocardial and coronary responses to GLP-2. Methods and results: GLP-2 receptors were detected on ventricular extracts by quantitative real-time polymerase chain reaction (Q-RT-PCR) and Western blotting. Cardiac GLP-2 effects were analysed on Langendorff perfused hearts. Intracellular GLP-2 signalling was investigated on Langendorff perfused hearts and by Western blotting and enzyme-linked immunosorbent assay (ELISA) on ventricular extracts. By immunoblotting and Q-RT-PCR, we revealed the expression of ventricular GLP-2 receptors. Perfusion analyses showed that GLP-2 induces positive inotropism at low concentration (0.001 nM), and negative inotropism and lusitropism from 0.1 nM. It dose-dependently constricts coronaries. The negative effects of GLP-2 were independent from GLP-1 receptors, being unaffected by exendin-3 (9-39) amide. GLP-2-dependent negative action involves Gi/o proteins, associates with a reduction of intracellular cyclic adenosine monophosphate (cAMP), an increase in extracellular signal regulated kinases 1 and 2 (ERK1/2) and a decrease in phospholamban phosphorylation, but is independent from endothelial nitric oxide synthase (eNOS) and protein kinase G (PKG). Finally, GLP-2 competitively antagonised b-adrenergic stimulation. Conclusions: For the first time, to our knowledge, we found that: (1) the rat heart expresses functional GLP-2 receptors; (2) GLP-2 acts on both myocardium and coronaries, negatively modulating both basal and b-adrenergic stimulated cardiac performance; and (3) GLP-2 effects are mediated by G-proteins and involve ERK1/2.File | Dimensione | Formato | |
---|---|---|---|
GLP-2 e CuoreAngelone.pdf
Solo gestori archvio
Descrizione: manoscritto
Dimensione
792.88 kB
Formato
Adobe PDF
|
792.88 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.