We address the macroscopic quantumness of the state of mechanical systems subjected to conditional protocols devised for state engineering in cavity optomechanics. We use a measure of macroscopicity based on phase-space methods. We cover the transition regime into strong single-photon coupling, illustrating how measurements performed over the cavity field that drives the dynamics of a mechanical system are able to steer the latter toward large quantum coherent states. The effect of losses is evaluated for the case of an open cavity and analyzed in terms of the features of the Wigner functions of the state of the mechanical system. We also address the case of engineered phonon-subtracted mechanical systems, in full open-system configuration, demonstrating the existence of optimal working points for the sake of mesoscopic quantumness. Our study is relevant for and applicable to a broad range of settings, from clamped to levitated mechanical systems.

McAleese H., Paternostro M. (2020). Macroscopic quantumness of optically conditioned mechanical systems. NEW JOURNAL OF PHYSICS, 22(9), 093075 [10.1088/1367-2630/abb689].

Macroscopic quantumness of optically conditioned mechanical systems

Paternostro M.
Ultimo
Conceptualization
2020-09-23

Abstract

We address the macroscopic quantumness of the state of mechanical systems subjected to conditional protocols devised for state engineering in cavity optomechanics. We use a measure of macroscopicity based on phase-space methods. We cover the transition regime into strong single-photon coupling, illustrating how measurements performed over the cavity field that drives the dynamics of a mechanical system are able to steer the latter toward large quantum coherent states. The effect of losses is evaluated for the case of an open cavity and analyzed in terms of the features of the Wigner functions of the state of the mechanical system. We also address the case of engineered phonon-subtracted mechanical systems, in full open-system configuration, demonstrating the existence of optimal working points for the sake of mesoscopic quantumness. Our study is relevant for and applicable to a broad range of settings, from clamped to levitated mechanical systems.
23-set-2020
Settore FIS/03 - Fisica Della Materia
McAleese H., Paternostro M. (2020). Macroscopic quantumness of optically conditioned mechanical systems. NEW JOURNAL OF PHYSICS, 22(9), 093075 [10.1088/1367-2630/abb689].
File in questo prodotto:
File Dimensione Formato  
McAleese_2020_New_J._Phys._22_093075.pdf

accesso aperto

Tipologia: Versione Editoriale
Dimensione 2.38 MB
Formato Adobe PDF
2.38 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/627236
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact