Stable isotopes were used to examine differential effects of fish farm waste on the water column and sediments. To achieve this objective, we chose 3 marine fish farms located along the coast of Sicily (Mediterranean Sea) as point-source disturbances, and a control area. The hypothesis that carbon and nitrogen isotope composition of particulate (POM) and sedimentary (SOM) organic matter varied with increasing distance (from cages to 1000 m) was tested at 3 levels of hydrodynamics: low (mean velocity of current [MVC] ∼12 cm s -1), intermediate (MVC ∼22 cm s-1), and high (MVC ∼40 cm s-1). Different isotopic signals from allochthonous (fish waste) over natural (phytoplankton, terrigenous, and sand microflora) inputs allowed identification of the 'spatial effect regime' of fish farming. The increasing water current velocities seem to proportionally enlarge the relative area of influence of the cages, particularly on sediments. At low hydrodynamics, an increasing contribution of terrigenous signals was inferred: POM and SOM showing a depleted gradient of C (ranging from -22.0 to -24.0‰) and N (from 5.0 to 2.0‰). At an intermediate hydrodynamic level, C and N showed a slight increase in waste contribution, particularly in POM (δ15N from 2.6 to ∼4.0‰). At high hydrodynamics, an enriching isotopic gradient (δ15NPOM-SOM from 1.8 to 4.6‰) suggested a notable contribution of fish waste. Accordingly, the dispersal of waste from the cages seemed to be related to movements at the bottom of the water column, confirming the recently identified role played by resuspension movements.

Sarà, G., Scilipoti, D., Milazzo, M., & Modica, A. (2006). Use of stable isotopes to investigate dispersal of waste from fish farm as a function of hydrodynamics. MARINE ECOLOGY PROGRESS SERIES, 313, 261-270 [10.3354/meps313261].

Use of stable isotopes to investigate dispersal of waste from fish farm as a function of hydrodynamics.

SARA', Gianluca;MILAZZO, Marco;
2006

Abstract

Stable isotopes were used to examine differential effects of fish farm waste on the water column and sediments. To achieve this objective, we chose 3 marine fish farms located along the coast of Sicily (Mediterranean Sea) as point-source disturbances, and a control area. The hypothesis that carbon and nitrogen isotope composition of particulate (POM) and sedimentary (SOM) organic matter varied with increasing distance (from cages to 1000 m) was tested at 3 levels of hydrodynamics: low (mean velocity of current [MVC] ∼12 cm s -1), intermediate (MVC ∼22 cm s-1), and high (MVC ∼40 cm s-1). Different isotopic signals from allochthonous (fish waste) over natural (phytoplankton, terrigenous, and sand microflora) inputs allowed identification of the 'spatial effect regime' of fish farming. The increasing water current velocities seem to proportionally enlarge the relative area of influence of the cages, particularly on sediments. At low hydrodynamics, an increasing contribution of terrigenous signals was inferred: POM and SOM showing a depleted gradient of C (ranging from -22.0 to -24.0‰) and N (from 5.0 to 2.0‰). At an intermediate hydrodynamic level, C and N showed a slight increase in waste contribution, particularly in POM (δ15N from 2.6 to ∼4.0‰). At high hydrodynamics, an enriching isotopic gradient (δ15NPOM-SOM from 1.8 to 4.6‰) suggested a notable contribution of fish waste. Accordingly, the dispersal of waste from the cages seemed to be related to movements at the bottom of the water column, confirming the recently identified role played by resuspension movements.
Settore BIO/07 - Ecologia
https://www.int-res.com/abstracts/meps/v313/p261-270/
Sarà, G., Scilipoti, D., Milazzo, M., & Modica, A. (2006). Use of stable isotopes to investigate dispersal of waste from fish farm as a function of hydrodynamics. MARINE ECOLOGY PROGRESS SERIES, 313, 261-270 [10.3354/meps313261].
File in questo prodotto:
File Dimensione Formato  
Sarà et al 2006 MEPS Isotopes.pdf

accesso aperto

Descrizione: file pdf
Dimensione 403.02 kB
Formato Adobe PDF
403.02 kB Adobe PDF Visualizza/Apri
Sarà-et-al-2006-Marine-Ecology-Progress-Series.pdf

accesso aperto

Dimensione 333.52 kB
Formato Adobe PDF
333.52 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10447/62529
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 63
  • ???jsp.display-item.citation.isi??? 61
social impact