In this paper, we present SDR-LoRa, an open-source, full-fledged Software Defined Radio (SDR) implementation of a LoRa transceiver. First, we conduct a thorough analysis of the LoRa physical layer (PHY) functionalities, encompassing processes such as packet modulation, demodulation, and preamble detection. Then, we leverage on this analysis to create a pioneering SDR-based LoRa PHY implementation. Accordingly, we thoroughly describe all the implementation details. Moreover, we illustrate how SDR-LoRa can help boost research on the LoRa protocol by presenting three exemplary key applications that can be built on top of our implementation, namely fine-grained localization, interference cancellation, and enhanced link reliability. To validate SDR-LoRa and its applications, we test it on two different platforms: (i) a physical setup involving USRP radios and off-the-shelf commercial devices, and (ii) the Colosseum wireless channel emulator. Our experimental findings reveal that (i) SDR-LoRa performs comparably to conventional commercial LoRa systems, and (ii) all the aforementioned applications can be successfully implemented on top of SDR-LoRa with remarkable results. The complete details of the SDR-LoRa implementation code have been publicly shared online, together with a plug-and-play Colosseum container.

Busacca, F., Mangione, S., Palazzo, S., Restuccia, F., Tinnirello, I. (2024). SDR-LoRa, an open-source, full-fledged implementation of LoRa on Software-Defined-Radios: Design and potential exploitation. COMPUTER NETWORKS, 241 [10.1016/j.comnet.2024.110194].

SDR-LoRa, an open-source, full-fledged implementation of LoRa on Software-Defined-Radios: Design and potential exploitation

Busacca, Fabio
;
Mangione, Stefano;Tinnirello, Ilenia
2024-01-19

Abstract

In this paper, we present SDR-LoRa, an open-source, full-fledged Software Defined Radio (SDR) implementation of a LoRa transceiver. First, we conduct a thorough analysis of the LoRa physical layer (PHY) functionalities, encompassing processes such as packet modulation, demodulation, and preamble detection. Then, we leverage on this analysis to create a pioneering SDR-based LoRa PHY implementation. Accordingly, we thoroughly describe all the implementation details. Moreover, we illustrate how SDR-LoRa can help boost research on the LoRa protocol by presenting three exemplary key applications that can be built on top of our implementation, namely fine-grained localization, interference cancellation, and enhanced link reliability. To validate SDR-LoRa and its applications, we test it on two different platforms: (i) a physical setup involving USRP radios and off-the-shelf commercial devices, and (ii) the Colosseum wireless channel emulator. Our experimental findings reveal that (i) SDR-LoRa performs comparably to conventional commercial LoRa systems, and (ii) all the aforementioned applications can be successfully implemented on top of SDR-LoRa with remarkable results. The complete details of the SDR-LoRa implementation code have been publicly shared online, together with a plug-and-play Colosseum container.
19-gen-2024
Busacca, F., Mangione, S., Palazzo, S., Restuccia, F., Tinnirello, I. (2024). SDR-LoRa, an open-source, full-fledged implementation of LoRa on Software-Defined-Radios: Design and potential exploitation. COMPUTER NETWORKS, 241 [10.1016/j.comnet.2024.110194].
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1389128624000264-main.pdf

accesso aperto

Tipologia: Versione Editoriale
Dimensione 1.77 MB
Formato Adobe PDF
1.77 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/623133
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact