Cayley and Oguiso have constructed certain quartic K3 surfaces S, with automorphisms g of infinite order. We show that when g is symplectic (resp. anti-symplectic), it acts as the identity (resp. minus the identity) on the degree zero part of the Chow group of zero-cycles of S.
Bini, G., Laterveer, R. (2024). Zero-Cycles and the Cayley-Oguiso automorphism. ANNALI DELL'UNIVERSITÀ DI FERRARA. SCIENZE MATEMATICHE [10.1007/s11565-023-00483-4].
Zero-Cycles and the Cayley-Oguiso automorphism
Bini, Gilberto;
2024-01-06
Abstract
Cayley and Oguiso have constructed certain quartic K3 surfaces S, with automorphisms g of infinite order. We show that when g is symplectic (resp. anti-symplectic), it acts as the identity (resp. minus the identity) on the degree zero part of the Chow group of zero-cycles of S.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
s11565-023-00483-4 (2).pdf
Solo gestori archvio
Tipologia:
Versione Editoriale
Dimensione
364.58 kB
Formato
Adobe PDF
|
364.58 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.