Wyoming-type bentonite is one of the materials to be used as part of the Engineered Barrier System (EBS) in deep geological disposal facilities for the safe disposal of spent nuclear fuel. In the KBS-3 type repository, the canisters containing the spent fuel assemblies are surrounded by bentonite buffer. Therefore, it is necessary to understand the bentonite behaviour in shearing conditions for the long-term performance assessment of the canisters. Bentonite shearing could arise, for example, due to potential post-glacial earthquakes. The deviatoric stress at failure and the shear modulus of a compacted Wyoming-type bentonite were measured using different shearing tests. Tests were carried out on unsaturated samples at three laboratories. The shearing tests on unsaturated samples were unconfined and triaxial compression tests, hollow cylinder tests and simple shear tests. Unconfined and triaxial compression tests were also carried out on saturated samples. The failure was quite ductile when tests were carried out with confining pressure. The samples were compacted at different dry densities and degrees of saturation and tested at different confining pressures and strain levels to study their influence on the shear properties. Shear strength and shear modulus were studied based on models that consider the double porosity structure of the bentonites. Previously published triaxial tests and resonant column test results were also included in this study. In combination with these models, several alternatives for the definition of the constitutive stress were checked for the case of bentonite. A novel, approach, involving the results of mercury intrusion porosimetry in estimating the constitutive stress, was introduced. The shear strength calculated by the models showed a good agreement with the measured values. In some cases, unrealistic large tensile stresses were predicted. Furthermore, the models can assess the tendency of the shear modulus as a function of the shear strain, degree of saturation and dry density.

Pintado X., Kumpulainen S., Romero E., Lloret A., Weber R.C., Ferrari A., et al. (2023). Shear strength and shear stiffness analysis of compacted Wyoming-type bentonite. GEOMECHANICS FOR ENERGY AND THE ENVIRONMENT, 34 [10.1016/j.gete.2023.100468].

Shear strength and shear stiffness analysis of compacted Wyoming-type bentonite

Ferrari A.;
2023-06-01

Abstract

Wyoming-type bentonite is one of the materials to be used as part of the Engineered Barrier System (EBS) in deep geological disposal facilities for the safe disposal of spent nuclear fuel. In the KBS-3 type repository, the canisters containing the spent fuel assemblies are surrounded by bentonite buffer. Therefore, it is necessary to understand the bentonite behaviour in shearing conditions for the long-term performance assessment of the canisters. Bentonite shearing could arise, for example, due to potential post-glacial earthquakes. The deviatoric stress at failure and the shear modulus of a compacted Wyoming-type bentonite were measured using different shearing tests. Tests were carried out on unsaturated samples at three laboratories. The shearing tests on unsaturated samples were unconfined and triaxial compression tests, hollow cylinder tests and simple shear tests. Unconfined and triaxial compression tests were also carried out on saturated samples. The failure was quite ductile when tests were carried out with confining pressure. The samples were compacted at different dry densities and degrees of saturation and tested at different confining pressures and strain levels to study their influence on the shear properties. Shear strength and shear modulus were studied based on models that consider the double porosity structure of the bentonites. Previously published triaxial tests and resonant column test results were also included in this study. In combination with these models, several alternatives for the definition of the constitutive stress were checked for the case of bentonite. A novel, approach, involving the results of mercury intrusion porosimetry in estimating the constitutive stress, was introduced. The shear strength calculated by the models showed a good agreement with the measured values. In some cases, unrealistic large tensile stresses were predicted. Furthermore, the models can assess the tendency of the shear modulus as a function of the shear strain, degree of saturation and dry density.
giu-2023
Pintado X., Kumpulainen S., Romero E., Lloret A., Weber R.C., Ferrari A., et al. (2023). Shear strength and shear stiffness analysis of compacted Wyoming-type bentonite. GEOMECHANICS FOR ENERGY AND THE ENVIRONMENT, 34 [10.1016/j.gete.2023.100468].
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2352380823000370-main.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 3.91 MB
Formato Adobe PDF
3.91 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/621656
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact