We introduce the idea of weakly coherent collisional models, where the elements of an environment interacting with a system of interest are prepared in states that are approximately thermal but have an amount of coherence proportional to a short system-environment interaction time in a scenario akin to well-known collisional models. We show that, in the continuous-time limit, the model allows for a clear formulation of the first and second laws of thermodynamics, which are modified to include a nontrivial contribution related to quantum coherence. Remarkably, we derive a bound showing that the degree of such coherence in the state of the elements of the environment represents a resource, which can be consumed to convert heat into an ordered (unitarylike) energy term in the system, even though no work is performed in the global dynamics. Our results therefore represent an instance where thermodynamics can be extended beyond thermal systems, opening the way for combining classical and quantum resources.

Rodrigues F.L.S., De Chiara G., Paternostro M., Landi G.T. (2019). Thermodynamics of Weakly Coherent Collisional Models. PHYSICAL REVIEW LETTERS, 123(14) [10.1103/PhysRevLett.123.140601].

Thermodynamics of Weakly Coherent Collisional Models

Paternostro M.
Co-ultimo
;
2019-10-03

Abstract

We introduce the idea of weakly coherent collisional models, where the elements of an environment interacting with a system of interest are prepared in states that are approximately thermal but have an amount of coherence proportional to a short system-environment interaction time in a scenario akin to well-known collisional models. We show that, in the continuous-time limit, the model allows for a clear formulation of the first and second laws of thermodynamics, which are modified to include a nontrivial contribution related to quantum coherence. Remarkably, we derive a bound showing that the degree of such coherence in the state of the elements of the environment represents a resource, which can be consumed to convert heat into an ordered (unitarylike) energy term in the system, even though no work is performed in the global dynamics. Our results therefore represent an instance where thermodynamics can be extended beyond thermal systems, opening the way for combining classical and quantum resources.
3-ott-2019
Rodrigues F.L.S., De Chiara G., Paternostro M., Landi G.T. (2019). Thermodynamics of Weakly Coherent Collisional Models. PHYSICAL REVIEW LETTERS, 123(14) [10.1103/PhysRevLett.123.140601].
File in questo prodotto:
File Dimensione Formato  
PhysRevLett.123.140601.pdf

Solo gestori archvio

Descrizione: articolo in rivista
Tipologia: Versione Editoriale
Dimensione 331.77 kB
Formato Adobe PDF
331.77 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/620735
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 72
  • ???jsp.display-item.citation.isi??? 70
social impact