For an (imaginary) hyperelliptic curve H of genus g, we determine a basis of the Riemann-Roch space L(D), where D is a divisor with positive degree n, linearly equivalent to P{1} + … + P{j} + (n − j)Ω, with 0 ≤ j ≤ g, where Ω is a Weierstrass point, taken as the point at infinity. Directly, this provides in turn a generating matrix of a Goppa codes.
Falcone G., Figula A., Hannusch C. (2022). On the generating matrices of Goppa codes over hyperelliptic curves. JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 37(3), 273-279.
On the generating matrices of Goppa codes over hyperelliptic curves
Falcone G.
;
2022-01-01
Abstract
For an (imaginary) hyperelliptic curve H of genus g, we determine a basis of the Riemann-Roch space L(D), where D is a divisor with positive degree n, linearly equivalent to P{1} + … + P{j} + (n − j)Ω, with 0 ≤ j ≤ g, where Ω is a Weierstrass point, taken as the point at infinity. Directly, this provides in turn a generating matrix of a Goppa codes.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
FFH20210816.pdf
Solo gestori archvio
Descrizione: Manoscritto finale
Tipologia:
Versione Editoriale
Dimensione
312.94 kB
Formato
Adobe PDF
|
312.94 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.