We consider a Robin problem driven by a nonlinear nonhomogeneous differential operator plus a parametric potential term. The reaction is superlinear. We prove a bifurcation-type theorem describing the changes in the set of positive solutions as the parameter lambda in R moves. Also we show the existence of a minimal positive solution and prove its monotonicity and continuity properties as a function of the parameter. Finally we show the existence of a nodal solution.
Papaceorgiou, N.S., Vetro, C., Vetro, F. (2022). Parametric nonlinear nonhomogeneous Robin problems. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 23(7), 1289-1310.
Parametric nonlinear nonhomogeneous Robin problems
Vetro, C;
2022-01-01
Abstract
We consider a Robin problem driven by a nonlinear nonhomogeneous differential operator plus a parametric potential term. The reaction is superlinear. We prove a bifurcation-type theorem describing the changes in the set of positive solutions as the parameter lambda in R moves. Also we show the existence of a minimal positive solution and prove its monotonicity and continuity properties as a function of the parameter. Finally we show the existence of a nodal solution.File | Dimensione | Formato | |
---|---|---|---|
2022_jncav-23n7p1289_PVV.pdf
Solo gestori archvio
Descrizione: Articolo Principale
Tipologia:
Versione Editoriale
Dimensione
693.81 kB
Formato
Adobe PDF
|
693.81 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.