We consider a parametric Dirichlet problem driven by a nonhomogeneous differential operator and with a reaction which has singular and critical terms. Using cut-off techniques and variational methods, we show that for all small values of the parameter λ > 0, the problem has a positive solution and this solution converges to 0 in C_0^1(\overline{\Omega}) as λ to 0^+.

Papageorgiou N.S., Vetro C., Vetro F. (2023). Nonhomogeneous Eigenvalue Problems with Singular and Critical Terms. FUNKCIALAJ EKVACIOJ, 66(1), 35-43 [10.1619/fesi.66.35].

Nonhomogeneous Eigenvalue Problems with Singular and Critical Terms

Vetro C.;
2023-01-01

Abstract

We consider a parametric Dirichlet problem driven by a nonhomogeneous differential operator and with a reaction which has singular and critical terms. Using cut-off techniques and variational methods, we show that for all small values of the parameter λ > 0, the problem has a positive solution and this solution converges to 0 in C_0^1(\overline{\Omega}) as λ to 0^+.
2023
Settore MAT/05 - Analisi Matematica
Papageorgiou N.S., Vetro C., Vetro F. (2023). Nonhomogeneous Eigenvalue Problems with Singular and Critical Terms. FUNKCIALAJ EKVACIOJ, 66(1), 35-43 [10.1619/fesi.66.35].
File in questo prodotto:
File Dimensione Formato  
2023-PVV-Funkcialaj Ekvacioj-03.pdf

Solo gestori archvio

Descrizione: Articolo Principale
Tipologia: Versione Editoriale
Dimensione 93.43 kB
Formato Adobe PDF
93.43 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/619243
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact