We consider a parametric Dirichlet problem driven by a nonhomogeneous differential operator and with a reaction which has singular and critical terms. Using cut-off techniques and variational methods, we show that for all small values of the parameter λ > 0, the problem has a positive solution and this solution converges to 0 in C_0^1(\overline{\Omega}) as λ to 0^+.
Papageorgiou N.S., Vetro C., Vetro F. (2023). Nonhomogeneous Eigenvalue Problems with Singular and Critical Terms. FUNKCIALAJ EKVACIOJ, 66(1), 35-43 [10.1619/fesi.66.35].
Nonhomogeneous Eigenvalue Problems with Singular and Critical Terms
Vetro C.;
2023-01-01
Abstract
We consider a parametric Dirichlet problem driven by a nonhomogeneous differential operator and with a reaction which has singular and critical terms. Using cut-off techniques and variational methods, we show that for all small values of the parameter λ > 0, the problem has a positive solution and this solution converges to 0 in C_0^1(\overline{\Omega}) as λ to 0^+.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2023-PVV-Funkcialaj Ekvacioj-03.pdf
Solo gestori archvio
Descrizione: Articolo Principale
Tipologia:
Versione Editoriale
Dimensione
93.43 kB
Formato
Adobe PDF
|
93.43 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.