The aim of this paper is to study a double phase problem with nonlinear boundary condition of critical growth and with a superlinear righthand side that does not satisfy the Ambrosetti-Rabinowitz condition. Based on an equivalent norm in the Musielak-Orlicz Sobolev space along with variational tools and critical point theory, we prove the existence of at least two nontrivial, bounded weak solutions.

Giuseppina D'Aguì, A.S. (2023). PARAMETRIC ROBIN DOUBLE PHASE PROBLEMS WITH CRITICAL GROWTH ON THE BOUNDARY. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S, 16(6), 1286-1299 [10.3934/dcdss.2022156].

PARAMETRIC ROBIN DOUBLE PHASE PROBLEMS WITH CRITICAL GROWTH ON THE BOUNDARY

Angela Sciammetta;Elisabetta Tornatore;Patrick Winkert
2023-01-01

Abstract

The aim of this paper is to study a double phase problem with nonlinear boundary condition of critical growth and with a superlinear righthand side that does not satisfy the Ambrosetti-Rabinowitz condition. Based on an equivalent norm in the Musielak-Orlicz Sobolev space along with variational tools and critical point theory, we prove the existence of at least two nontrivial, bounded weak solutions.
2023
Giuseppina D'Aguì, A.S. (2023). PARAMETRIC ROBIN DOUBLE PHASE PROBLEMS WITH CRITICAL GROWTH ON THE BOUNDARY. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S, 16(6), 1286-1299 [10.3934/dcdss.2022156].
File in questo prodotto:
File Dimensione Formato  
articolo (1).pdf

Solo gestori archvio

Descrizione: Articolo
Tipologia: Versione Editoriale
Dimensione 7.57 MB
Formato Adobe PDF
7.57 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/619153
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact