The MEG experiment took data at the Paul Scherrer Institute in the years 2009–2013 to test the violation of the lepton flavor conservation law, which originates from an accidental symmetry that the Standard Model of elementary particle physics has, and published the most stringent limit on the charged lepton flavor violating decay µ+ → e+γ: BR(µ+ → e+γ) < 4.2 × 10−13 at 90% confidence level. The MEG detector has been upgraded in order to reach a sensitivity of 6 × 10−14 . The basic principle of MEG II is to achieve the highest possible sensitivity using the full muon beam intensity at the Paul Scherrer Institute (7 × 107 muons/s) with an upgraded detector. The main improvements are better rate capability of all sub-detectors and improved resolutions while keeping the same detector concept. In this paper, we present the current status of the preparation, integration and commissioning of the MEG II detector in the recent engineering runs.
Baldini A.M., Baranov V., Biasotti M., Boca G., Cattaneo P.W., Cavoto G., et al. (2021). The search for µ+ → e+γ with 10−14 sensitivity: The upgrade of the MEG experiment. SYMMETRY, 13(9) [10.3390/sym13091591].
The search for µ+ → e+γ with 10−14 sensitivity: The upgrade of the MEG experiment
Chiarello G.;
2021-01-01
Abstract
The MEG experiment took data at the Paul Scherrer Institute in the years 2009–2013 to test the violation of the lepton flavor conservation law, which originates from an accidental symmetry that the Standard Model of elementary particle physics has, and published the most stringent limit on the charged lepton flavor violating decay µ+ → e+γ: BR(µ+ → e+γ) < 4.2 × 10−13 at 90% confidence level. The MEG detector has been upgraded in order to reach a sensitivity of 6 × 10−14 . The basic principle of MEG II is to achieve the highest possible sensitivity using the full muon beam intensity at the Paul Scherrer Institute (7 × 107 muons/s) with an upgraded detector. The main improvements are better rate capability of all sub-detectors and improved resolutions while keeping the same detector concept. In this paper, we present the current status of the preparation, integration and commissioning of the MEG II detector in the recent engineering runs.File | Dimensione | Formato | |
---|---|---|---|
Baldini_The+Search_2021.pdf
accesso aperto
Tipologia:
Versione Editoriale
Dimensione
633.44 kB
Formato
Adobe PDF
|
633.44 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.