As people age, their skeletal muscle (SkM) experiences a decline in mitochondrial functionality and density, which leads to decreased energy production and increased generation of reactive oxygen species. This cascade of events, in turn, might determine the loss of SkM mass, strength and quality. Even though the mitochondrial processes dysregulated by aging, such as oxidative phosphorylation, mitophagy, antioxidant defenses and mtDNA transcription, are the same in both sexes, mitochondria age differently in the SkM of men and women. Indeed, the onset and magnitude of the impairment of these processes seem to be influenced by sex-specific factors. Sexual hormones play a pivotal role in the regulation of SkM mass through both genomic and non-genomic mechanisms. However, the precise mechanisms by which these hormones regulate mitochondrial plasticity in SkM are not fully understood. Although the presence of estrogen receptors in mitochondria is recognized, it remains unclear whether androgen receptors affect mitochondrial function. This comprehensive review critically dissects the current knowledge on the interplay of sex in the aging of SkM, focusing on the role of sex hormones and the corresponding signaling pathways in shaping mitochondrial plasticity. Improved knowledge on the sex dimorphism of mitochondrial aging may lead to sex-tailored interventions that target mitochondrial health, which could be effective in slowing or preventing age-related muscle loss.

Nuccio, A., Nogueira-Ferreira, R., Moreira-Pais, A., Attanzio, A., Duarte, J.A., Luparello, C., et al. (2023). The contribution of mitochondria to age-related skeletal muscle wasting: A sex-specific perspective [10.1016/j.lfs.2023.122324].

The contribution of mitochondria to age-related skeletal muscle wasting: A sex-specific perspective

Nuccio, Alessandro;Attanzio, Alessandro;Luparello, Claudio;
2023-11-30

Abstract

As people age, their skeletal muscle (SkM) experiences a decline in mitochondrial functionality and density, which leads to decreased energy production and increased generation of reactive oxygen species. This cascade of events, in turn, might determine the loss of SkM mass, strength and quality. Even though the mitochondrial processes dysregulated by aging, such as oxidative phosphorylation, mitophagy, antioxidant defenses and mtDNA transcription, are the same in both sexes, mitochondria age differently in the SkM of men and women. Indeed, the onset and magnitude of the impairment of these processes seem to be influenced by sex-specific factors. Sexual hormones play a pivotal role in the regulation of SkM mass through both genomic and non-genomic mechanisms. However, the precise mechanisms by which these hormones regulate mitochondrial plasticity in SkM are not fully understood. Although the presence of estrogen receptors in mitochondria is recognized, it remains unclear whether androgen receptors affect mitochondrial function. This comprehensive review critically dissects the current knowledge on the interplay of sex in the aging of SkM, focusing on the role of sex hormones and the corresponding signaling pathways in shaping mitochondrial plasticity. Improved knowledge on the sex dimorphism of mitochondrial aging may lead to sex-tailored interventions that target mitochondrial health, which could be effective in slowing or preventing age-related muscle loss.
30-nov-2023
Settore BIO/06 - Anatomia Comparata E Citologia
Settore BIO/10 - Biochimica
Nuccio, A., Nogueira-Ferreira, R., Moreira-Pais, A., Attanzio, A., Duarte, J.A., Luparello, C., et al. (2023). The contribution of mitochondria to age-related skeletal muscle wasting: A sex-specific perspective [10.1016/j.lfs.2023.122324].
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0024320523009591-main.pdf

accesso aperto

Descrizione: reprint
Tipologia: Versione Editoriale
Dimensione 3.78 MB
Formato Adobe PDF
3.78 MB Adobe PDF Visualizza/Apri
pagination_LFS_122324.pdf

accesso aperto

Tipologia: Pre-print
Dimensione 1.25 MB
Formato Adobe PDF
1.25 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/618853
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact