Let X be an infinite, connected, locally finite and vertex-transitive graph with infinitely many ends and let G be a subgroup of Aut(X) which acts transitively on X. In this note we provide a necessary and sufficient condition for the existence of a hyperbolic translation g in G with fixed ends in two prescribed open subsets of the space of ends of X. We also give an explicit combinatorial construction of the hyperbolic translation g in the special case where X is a (right) Cayley graph of a (non-abelian) free group of finite type G.

Pavone, M. (2009). On the fixed ends of hyperbolic translations of infinite graphs. BOLLETTINO DI MATEMATICA PURA E APPLICATA, II, 5-14.

On the fixed ends of hyperbolic translations of infinite graphs

PAVONE, Marco
2009-01-01

Abstract

Let X be an infinite, connected, locally finite and vertex-transitive graph with infinitely many ends and let G be a subgroup of Aut(X) which acts transitively on X. In this note we provide a necessary and sufficient condition for the existence of a hyperbolic translation g in G with fixed ends in two prescribed open subsets of the space of ends of X. We also give an explicit combinatorial construction of the hyperbolic translation g in the special case where X is a (right) Cayley graph of a (non-abelian) free group of finite type G.
2009
Pavone, M. (2009). On the fixed ends of hyperbolic translations of infinite graphs. BOLLETTINO DI MATEMATICA PURA E APPLICATA, II, 5-14.
File in questo prodotto:
File Dimensione Formato  
Translations of graphs(rivista).pdf

Solo gestori archvio

Descrizione: Ultima bozza di stampa della rivista prima dell'impaginazione finale con gli altri articoli
Dimensione 229.37 kB
Formato Adobe PDF
229.37 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/61017
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact