The polymerization of serpins is at the root of a large class of diseases; the molecular structure of serpin polymers has been recently debated. Here, we study the polymerization kinetics of human neuroserpin by Fourier Transform Infra Red spectroscopy and by time-lapse Size Exclusion Chromatography. Firstly we show that two distinct neuroserpin polymers, formed at 45 and 85 °C, display the same isosbestic points in the Amide I′ band, and therefore share common secondary structure features. We also find a concentration independent polymerization rate at 45 °C, suggesting that the polymerization rate-limiting step is the formation of an activated monomeric species. The polymer structures are consistent with a model that predicts the bare insertion of portions of the reactive center loop into the A β-sheet of neighboring serpin molecule, although with different extents at 45 and 85 °C.
Santangelo, M.G., Noto, R., Levantino, M., Cupane, A., Ricagno, S., Pezzullo, M., et al. (2012). On the molecular structure of human neuroserpin polymers. PROTEINS, 80(1), 8-13 [10.1002/prot.23197].
On the molecular structure of human neuroserpin polymers
SANTANGELO, Maria Grazia;LEVANTINO, Matteo;CUPANE, Antonio;
2012-01-01
Abstract
The polymerization of serpins is at the root of a large class of diseases; the molecular structure of serpin polymers has been recently debated. Here, we study the polymerization kinetics of human neuroserpin by Fourier Transform Infra Red spectroscopy and by time-lapse Size Exclusion Chromatography. Firstly we show that two distinct neuroserpin polymers, formed at 45 and 85 °C, display the same isosbestic points in the Amide I′ band, and therefore share common secondary structure features. We also find a concentration independent polymerization rate at 45 °C, suggesting that the polymerization rate-limiting step is the formation of an activated monomeric species. The polymer structures are consistent with a model that predicts the bare insertion of portions of the reactive center loop into the A β-sheet of neighboring serpin molecule, although with different extents at 45 and 85 °C.File | Dimensione | Formato | |
---|---|---|---|
2012_Proteins_80_8_Santangelo_et_al.pdf
accesso aperto
Dimensione
1.09 MB
Formato
Adobe PDF
|
1.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.