Accelerated neutron tests on silicon (Si) and silicon carbide (SiC) power MOSFETs at different temperatures and drain bias voltages were performed at the ChipIr facility (Didcot, UK). A super-junction silicon MOSFET and planar SiC MOSFETs with different technologies made by STMicroelectronics were used. Different test methods were employed to investigate the effects of temperature on neutron susceptibility in power MOSFETs. The destructive tests showed that all investigated devices failed via a single-event burnout (SEB) mechanism. Non-destructive tests conducted by using the power MOSFET as a neutron detector allowed measuring the temperature trend of the deposited charge due to neutron interactions. The results of the destructive tests, in the 􀀀50 C–180 C temperature range, revealed the lack of a common trend concerning the FIT temperature dependence among the investigated SiC power MOSFETs. Moreover, for some test vehicles, the FIT-temperature curves were dependent on the bias condition. The temperature dependence of the FIT values, observed in some SiC devices, is weaker with respect to that measured in the Si MOSFET. The results of the non-destructive tests showed a good correlation between the temperature trends of the deposited charge with those of FIT data, for both Si and SiC devices.

Principato, F., Cazzaniga, C., Kastriotou, M., Frost, C., Abbene, L., Pintacuda, F. (2023). Impact of Temperature on Neutron Irradiation Failure-in-Time of Silicon and Silicon Carbide Power MOSFETs. RADIATION, 3(2), 110-122 [10.3390/radiation3020010].

Impact of Temperature on Neutron Irradiation Failure-in-Time of Silicon and Silicon Carbide Power MOSFETs

Principato, Fabio
Primo
;
Abbene, Leonardo;
2023-05-30

Abstract

Accelerated neutron tests on silicon (Si) and silicon carbide (SiC) power MOSFETs at different temperatures and drain bias voltages were performed at the ChipIr facility (Didcot, UK). A super-junction silicon MOSFET and planar SiC MOSFETs with different technologies made by STMicroelectronics were used. Different test methods were employed to investigate the effects of temperature on neutron susceptibility in power MOSFETs. The destructive tests showed that all investigated devices failed via a single-event burnout (SEB) mechanism. Non-destructive tests conducted by using the power MOSFET as a neutron detector allowed measuring the temperature trend of the deposited charge due to neutron interactions. The results of the destructive tests, in the 􀀀50 C–180 C temperature range, revealed the lack of a common trend concerning the FIT temperature dependence among the investigated SiC power MOSFETs. Moreover, for some test vehicles, the FIT-temperature curves were dependent on the bias condition. The temperature dependence of the FIT values, observed in some SiC devices, is weaker with respect to that measured in the Si MOSFET. The results of the non-destructive tests showed a good correlation between the temperature trends of the deposited charge with those of FIT data, for both Si and SiC devices.
30-mag-2023
Settore FIS/03 - Fisica Della Materia
Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin)
Principato, F., Cazzaniga, C., Kastriotou, M., Frost, C., Abbene, L., Pintacuda, F. (2023). Impact of Temperature on Neutron Irradiation Failure-in-Time of Silicon and Silicon Carbide Power MOSFETs. RADIATION, 3(2), 110-122 [10.3390/radiation3020010].
File in questo prodotto:
File Dimensione Formato  
radiation-03-00010-v2.pdf

accesso aperto

Descrizione: articolo
Tipologia: Versione Editoriale
Dimensione 4.86 MB
Formato Adobe PDF
4.86 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/609113
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact