Al2O3-TiO2 coatings were obtained from a silicate-based electrolyte using pulsed bipolar current by PEO process. Nano-particle titania (NP-TiO2) and potassium titanyl oxalate (PTO) were used as Ti-based additive sources in the PEO electrolytic solution, separately. The coatings were characterized using scanning electron microscope, energy dispersive spectroscopy, and an X-ray diffractometer. The mechanical properties of the coatings were investigated using nanoindentation and ball-on-disk tests. SEM results showed that the PTO developed a more compact inner layer besides the increase of coating thickness. However, NP-TiO2 created an inner layer with less thickness but with higher compactness, without any effect on the outer layer morphology. XRD and Raman spectroscopy analyses showed that the NP-TiO2 had inert incorporation into the alumina. However, TiO2 pro-duced by PTO had reactive incorporation into alumina and made a polymeric titanium oxide structure on the coating with doped rutile and anatase phases. Nanoindentation and tribology analyses approved that the Ti incorporation through PTO provides appropriate mechanical properties owing to the more compact and thicker inner layer. The mechanism of PTO performance in the PEO process was discussed regarding its effect on coating characteristics.

Hashemzadeh M., Raeissi K., Ashrafizadeh F., Simchen F., Hakimizad A., Santamaria M., et al. (2023). The importance of type of Ti-based additives on the PEO process and properties of Al2O3-TiO2 coating. SURFACES AND INTERFACES, 36 [10.1016/j.surfin.2022.102523].

The importance of type of Ti-based additives on the PEO process and properties of Al2O3-TiO2 coating

Santamaria M.;
2023-02-01

Abstract

Al2O3-TiO2 coatings were obtained from a silicate-based electrolyte using pulsed bipolar current by PEO process. Nano-particle titania (NP-TiO2) and potassium titanyl oxalate (PTO) were used as Ti-based additive sources in the PEO electrolytic solution, separately. The coatings were characterized using scanning electron microscope, energy dispersive spectroscopy, and an X-ray diffractometer. The mechanical properties of the coatings were investigated using nanoindentation and ball-on-disk tests. SEM results showed that the PTO developed a more compact inner layer besides the increase of coating thickness. However, NP-TiO2 created an inner layer with less thickness but with higher compactness, without any effect on the outer layer morphology. XRD and Raman spectroscopy analyses showed that the NP-TiO2 had inert incorporation into the alumina. However, TiO2 pro-duced by PTO had reactive incorporation into alumina and made a polymeric titanium oxide structure on the coating with doped rutile and anatase phases. Nanoindentation and tribology analyses approved that the Ti incorporation through PTO provides appropriate mechanical properties owing to the more compact and thicker inner layer. The mechanism of PTO performance in the PEO process was discussed regarding its effect on coating characteristics.
feb-2023
Settore ING-IND/23 - Chimica Fisica Applicata
Hashemzadeh M., Raeissi K., Ashrafizadeh F., Simchen F., Hakimizad A., Santamaria M., et al. (2023). The importance of type of Ti-based additives on the PEO process and properties of Al2O3-TiO2 coating. SURFACES AND INTERFACES, 36 [10.1016/j.surfin.2022.102523].
File in questo prodotto:
File Dimensione Formato  
surfaces and interfaces 2023.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 8.7 MB
Formato Adobe PDF
8.7 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/608436
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact