We prove the uniform boundedness of all solutions for a general class of Dirichlet anisotropic elliptic problems of the form $$-\Delta_{\overrightarrow{p}}u+\Phi_0(u,\nabla u)=\Psi(u,\nabla u) +f \quad \mbox{in } \Omega, \qquad u=0 \quad \mbox{on }\partial \Omega,$$ where $\Omega$ is a bounded open subset in $ \mathbb R^N$ $(N\geq 2)$, $ \Delta_{\overrightarrow{p}}u=\sum_{j=1}^N \partial_j (|\partial_j u|^{p_j-2}\partial_j u)$ and $\Phi_0(u,\nabla u)=\left(\mathfrak{a}_0+\sum_{j=1}^N \mathfrak{a}_j |\partial_j u|^{p_j}\right)|u|^{m-2}u$, with $\mathfrak{a}_0>0$, $m,p_j>1$, $\mathfrak{a}_j\geq 0$ for $1\leq j\leq N$ and $N/p=\sum_{k=1}^N (1/p_k)>1$. We assume that $f \in u^r(\Omega)$ with $r>N/p$. The feature of this study is the inclusion of a possibly singular gradient-dependent term $\Psi(u,\nabla u)=\sum_{j=1}^N |u|^{\theta_j-2}u\, |\partial_j u|^{q_j}$, where $\theta_j>0$ and $0\leq q_j

B. Brandolini, Florica C. Cirstea (2024). Boundedness of solutions to singular anisotropic elliptic equations. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S, 17(4), 1545-1561 [10.3934/dcdss.2023190].

Boundedness of solutions to singular anisotropic elliptic equations

B. Brandolini;
2024-04-01

Abstract

We prove the uniform boundedness of all solutions for a general class of Dirichlet anisotropic elliptic problems of the form $$-\Delta_{\overrightarrow{p}}u+\Phi_0(u,\nabla u)=\Psi(u,\nabla u) +f \quad \mbox{in } \Omega, \qquad u=0 \quad \mbox{on }\partial \Omega,$$ where $\Omega$ is a bounded open subset in $ \mathbb R^N$ $(N\geq 2)$, $ \Delta_{\overrightarrow{p}}u=\sum_{j=1}^N \partial_j (|\partial_j u|^{p_j-2}\partial_j u)$ and $\Phi_0(u,\nabla u)=\left(\mathfrak{a}_0+\sum_{j=1}^N \mathfrak{a}_j |\partial_j u|^{p_j}\right)|u|^{m-2}u$, with $\mathfrak{a}_0>0$, $m,p_j>1$, $\mathfrak{a}_j\geq 0$ for $1\leq j\leq N$ and $N/p=\sum_{k=1}^N (1/p_k)>1$. We assume that $f \in u^r(\Omega)$ with $r>N/p$. The feature of this study is the inclusion of a possibly singular gradient-dependent term $\Psi(u,\nabla u)=\sum_{j=1}^N |u|^{\theta_j-2}u\, |\partial_j u|^{q_j}$, where $\theta_j>0$ and $0\leq q_j
apr-2024
Settore MAT/05 - Analisi Matematica
B. Brandolini, Florica C. Cirstea (2024). Boundedness of solutions to singular anisotropic elliptic equations. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S, 17(4), 1545-1561 [10.3934/dcdss.2023190].
File in questo prodotto:
File Dimensione Formato  
DCDS (2023).pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 390.65 kB
Formato Adobe PDF
390.65 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/608133
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact