We provide a comprehensive DFT investigation of the mechanistic details of CO2 fixation into styrene oxide to form styrene carbonate, catalyzed by potassium iodide-tetraethylene glycol complex. A detailed view on the intermediate steps of the overall reaction clarifies the role of hydroxyl substances as co-catalysts for the alkali halide-catalyzed cycloaddition. The increase of iodide nucleophilicity in presence of tetraethylene glycol is examined and rationalized by NBO and Hirshfeld charge analysis, and bond distances. We explore how different alkali metal salts and glycols affect the catalytic performance. Our results provide important hints on the synthesis of cyclic carbonates from CO2 and epoxides promoted by alkali halides and glycol complexes, allowing the development of more efficient catalysts.

Butera V., Detz H. (2020). Cyclic Carbonate Formation from Epoxides and CO2Catalyzed by Sustainable Alkali Halide-Glycol Complexes: A DFT Study to Elucidate Reaction Mechanism and Catalytic Activity. ACS OMEGA, 5(29), 18064-18072 [10.1021/acsomega.0c01572].

Cyclic Carbonate Formation from Epoxides and CO2Catalyzed by Sustainable Alkali Halide-Glycol Complexes: A DFT Study to Elucidate Reaction Mechanism and Catalytic Activity

Butera V.
Primo
;
2020-01-01

Abstract

We provide a comprehensive DFT investigation of the mechanistic details of CO2 fixation into styrene oxide to form styrene carbonate, catalyzed by potassium iodide-tetraethylene glycol complex. A detailed view on the intermediate steps of the overall reaction clarifies the role of hydroxyl substances as co-catalysts for the alkali halide-catalyzed cycloaddition. The increase of iodide nucleophilicity in presence of tetraethylene glycol is examined and rationalized by NBO and Hirshfeld charge analysis, and bond distances. We explore how different alkali metal salts and glycols affect the catalytic performance. Our results provide important hints on the synthesis of cyclic carbonates from CO2 and epoxides promoted by alkali halides and glycol complexes, allowing the development of more efficient catalysts.
2020
Butera V., Detz H. (2020). Cyclic Carbonate Formation from Epoxides and CO2Catalyzed by Sustainable Alkali Halide-Glycol Complexes: A DFT Study to Elucidate Reaction Mechanism and Catalytic Activity. ACS OMEGA, 5(29), 18064-18072 [10.1021/acsomega.0c01572].
File in questo prodotto:
File Dimensione Formato  
ACS_Omega.pdf

accesso aperto

Tipologia: Versione Editoriale
Dimensione 2.75 MB
Formato Adobe PDF
2.75 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/607942
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 21
social impact