We present a multidisciplinary study based on Differential Scanning Calorimetry (DSC), paleomagnetic analysis, and numerical modeling to gain information on the timescales of syn- and post-depositional ductile deformation of the strongly welded and rheomorphic Green Tuff ignimbrite (GT; Pantelleria, Italy). DSC measurements allow the determination of glass fictive temperatures (Tf; i.e., the parameter accounting for the cooling dependence of glass structure and properties). Using a Tf-based geospeedometry procedure, we infer the cooling rate (qc) experienced by the glassy phases in different lithofacies within the GT formation. Glass shards from the basal pumice fall deposit record a fast qc of ∼10°C/s. In contrast, the ignimbrite body returns slow qc values depending on the stratigraphic position and lithofacies (basal/upper vitrophyres, fiamme-rich and rheomorphic layers), ranging from ∼10−2 to ∼10−6 °C/s. Moreover, paleomagnetic analyses of the natural remanent magnetization of ignimbrite matrix and embedded lithic clasts indicate an emplacement temperature higher than 550–600°C. By integrating calorimetric and paleomagnetic datasets, we constrain a conductive cooling model, describing the ignimbrite's temperature-time-viscosity (T–t–η) evolution from the eruptive temperature to below Tf. Outcomes suggest that the upper and basal vitrophyres deformed and quenched over hours, indicating that the entire GT underwent intense syn-depositional ductile deformation. Furthermore, the central body remained above Tf for a much longer timespan (>1 month), enabling post-emplacement rheomorphic flow. Lastly, we discuss the critical role of mechanisms such as shear heating and retrograde solubility of volatiles, in locally controlling the rheological behavior of the GT.

Scarani A., Faranda C.F., Vona A., Speranza F., Giordano G., Rotolo S.G., et al. (2023). Timescale of Emplacement and Rheomorphism of the Green Tuff Ignimbrite (Pantelleria, Italy). JOURNAL OF GEOPHYSICAL RESEARCH. SOLID EARTH, 128(7), 1-22 [10.1029/2022JB026257].

Timescale of Emplacement and Rheomorphism of the Green Tuff Ignimbrite (Pantelleria, Italy)

Faranda C. F.
Secondo
Membro del Collaboration Group
;
Rotolo S. G.
Penultimo
Membro del Collaboration Group
;
2023-07-01

Abstract

We present a multidisciplinary study based on Differential Scanning Calorimetry (DSC), paleomagnetic analysis, and numerical modeling to gain information on the timescales of syn- and post-depositional ductile deformation of the strongly welded and rheomorphic Green Tuff ignimbrite (GT; Pantelleria, Italy). DSC measurements allow the determination of glass fictive temperatures (Tf; i.e., the parameter accounting for the cooling dependence of glass structure and properties). Using a Tf-based geospeedometry procedure, we infer the cooling rate (qc) experienced by the glassy phases in different lithofacies within the GT formation. Glass shards from the basal pumice fall deposit record a fast qc of ∼10°C/s. In contrast, the ignimbrite body returns slow qc values depending on the stratigraphic position and lithofacies (basal/upper vitrophyres, fiamme-rich and rheomorphic layers), ranging from ∼10−2 to ∼10−6 °C/s. Moreover, paleomagnetic analyses of the natural remanent magnetization of ignimbrite matrix and embedded lithic clasts indicate an emplacement temperature higher than 550–600°C. By integrating calorimetric and paleomagnetic datasets, we constrain a conductive cooling model, describing the ignimbrite's temperature-time-viscosity (T–t–η) evolution from the eruptive temperature to below Tf. Outcomes suggest that the upper and basal vitrophyres deformed and quenched over hours, indicating that the entire GT underwent intense syn-depositional ductile deformation. Furthermore, the central body remained above Tf for a much longer timespan (>1 month), enabling post-emplacement rheomorphic flow. Lastly, we discuss the critical role of mechanisms such as shear heating and retrograde solubility of volatiles, in locally controlling the rheological behavior of the GT.
lug-2023
Settore GEO/07 - Petrologia E Petrografia
Settore GEO/08 - Geochimica E Vulcanologia
Scarani A., Faranda C.F., Vona A., Speranza F., Giordano G., Rotolo S.G., et al. (2023). Timescale of Emplacement and Rheomorphism of the Green Tuff Ignimbrite (Pantelleria, Italy). JOURNAL OF GEOPHYSICAL RESEARCH. SOLID EARTH, 128(7), 1-22 [10.1029/2022JB026257].
File in questo prodotto:
File Dimensione Formato  
Scarani et al 23 JGR.pdf

accesso aperto

Tipologia: Versione Editoriale
Dimensione 2.83 MB
Formato Adobe PDF
2.83 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/607813
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact