In this paper we introduce some contractive conditions of Meir–Keeler type for two mappings, called f-MK-pair mappings and f-CJM-pair (from Ciric, Jachymski, and Matkowski) mappings, in the framework of regular cone metric spaces and we prove theorems which guarantee the existence and uniqueness of common fixed points. We give also a fixed point result for a multivalued mapping that satisfies a contractive condition of Meir–Keeler type. These results extend and generalize some recent results from the literature. To conclude the paper, we extend our main result to non-regular cone metric spaces by using the scalarization method of Du.

Di Bari, C., Saadati, R., Vetro, P. (2011). Common fixed points in cone metric spaces for CJM-pairs. MATHEMATICAL AND COMPUTER MODELLING, 54(9-10), 2348-2354 [10.1016/j.mcm.2011.05.043].

Common fixed points in cone metric spaces for CJM-pairs

DI BARI, Cristina;VETRO, Pasquale
2011-01-01

Abstract

In this paper we introduce some contractive conditions of Meir–Keeler type for two mappings, called f-MK-pair mappings and f-CJM-pair (from Ciric, Jachymski, and Matkowski) mappings, in the framework of regular cone metric spaces and we prove theorems which guarantee the existence and uniqueness of common fixed points. We give also a fixed point result for a multivalued mapping that satisfies a contractive condition of Meir–Keeler type. These results extend and generalize some recent results from the literature. To conclude the paper, we extend our main result to non-regular cone metric spaces by using the scalarization method of Du.
2011
Di Bari, C., Saadati, R., Vetro, P. (2011). Common fixed points in cone metric spaces for CJM-pairs. MATHEMATICAL AND COMPUTER MODELLING, 54(9-10), 2348-2354 [10.1016/j.mcm.2011.05.043].
File in questo prodotto:
File Dimensione Formato  
DiBariSaadatiVetro.pdf

Solo gestori archvio

Dimensione 163.53 kB
Formato Adobe PDF
163.53 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/60439
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 10
social impact