The existence of a rigged Hilbert space whose extreme spaces are, respectively, the projective and the inductive limit of a directed contractive family of Hilbert spaces is investigated. It is proved that, when it exists, this rigged Hilbert space is the same as the canonical rigged Hilbert space associated to a family of closable operators in the central Hilbert space.

Bellomonte, G., Trapani, C. (2011). Rigged Hilbert spaces and contractive families of Hilbert spaces. MONATSHEFTE FÜR MATHEMATIK, 164(3), 271-285 [10.1007/s00605-010-0249-1].

Rigged Hilbert spaces and contractive families of Hilbert spaces.

BELLOMONTE, Giorgia;TRAPANI, Camillo
2011-01-01

Abstract

The existence of a rigged Hilbert space whose extreme spaces are, respectively, the projective and the inductive limit of a directed contractive family of Hilbert spaces is investigated. It is proved that, when it exists, this rigged Hilbert space is the same as the canonical rigged Hilbert space associated to a family of closable operators in the central Hilbert space.
2011
Bellomonte, G., Trapani, C. (2011). Rigged Hilbert spaces and contractive families of Hilbert spaces. MONATSHEFTE FÜR MATHEMATIK, 164(3), 271-285 [10.1007/s00605-010-0249-1].
File in questo prodotto:
File Dimensione Formato  
RHS and contractive families of HS.pdf

Solo gestori archvio

Dimensione 388.75 kB
Formato Adobe PDF
388.75 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/60332
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 10
social impact