Hybridisation between domestic and wild taxa can pose severe threats to wildlife conservation, and human induced hybridisation, often linked to species' introductions and habitat degradation, may promote reproductive opportunities between species for which natural interbreeding would be highly unlikely. Using a biome specific approach, we examine the effects of a suite of ecological drivers on the European wildcat's genetic integrity, while assessing the role played by protected areas in this process. We used genotype data from 1217 putative European wildcat samples from 13 European countries to assess the effects of landcover, disturbance and legal landscape protection on the European wildcat's genetic integrity across European biomes, through generalised linear models within a Bayesian framework. Overall, we found European wildcats to have genetic integrity levels above the wildcat-hybrid threshold (ca. 83%; threshold = 80%). However, Mediterranean and Temperate Insular biomes (i.e., Scotland) revealed lower levels, with 74% and 46% expected genetic integrity, respectively. We found that different drivers shape the level of genetic introgression across biomes, although forest integrity seems to be a common factor promoting European wildcat genetic integrity. Wildcat genetic integrity remains high, regardless of landscape legal protection, in biomes where populations appear to be healthy and show recent local range expansions. However, in biomes more susceptible to hybridisation, even protected areas show limited effectiveness in mitigating this threat. In the face of the detected patterns, we recommend that species conservation and management plans should be biome-and landscape-context-specific to ensure effective wildcat conservation, especially in the Mediterranean and Temperate Insular biomes.
Goncalo Matias, Luis Miguel Rosalino, Paulo Célio Alves, Annika Tiesmeyer, Carsten Nowak, Luana Ramos, et al. (2022). Genetic integrity of European wildcats: Variation across biomes mandates geographically tailored conservation strategies. BIOLOGICAL CONSERVATION, 268, 1-14 [10.1016/j.biocon.2022.109518].
Genetic integrity of European wildcats: Variation across biomes mandates geographically tailored conservation strategies
Stefano Anile;
2022-04-01
Abstract
Hybridisation between domestic and wild taxa can pose severe threats to wildlife conservation, and human induced hybridisation, often linked to species' introductions and habitat degradation, may promote reproductive opportunities between species for which natural interbreeding would be highly unlikely. Using a biome specific approach, we examine the effects of a suite of ecological drivers on the European wildcat's genetic integrity, while assessing the role played by protected areas in this process. We used genotype data from 1217 putative European wildcat samples from 13 European countries to assess the effects of landcover, disturbance and legal landscape protection on the European wildcat's genetic integrity across European biomes, through generalised linear models within a Bayesian framework. Overall, we found European wildcats to have genetic integrity levels above the wildcat-hybrid threshold (ca. 83%; threshold = 80%). However, Mediterranean and Temperate Insular biomes (i.e., Scotland) revealed lower levels, with 74% and 46% expected genetic integrity, respectively. We found that different drivers shape the level of genetic introgression across biomes, although forest integrity seems to be a common factor promoting European wildcat genetic integrity. Wildcat genetic integrity remains high, regardless of landscape legal protection, in biomes where populations appear to be healthy and show recent local range expansions. However, in biomes more susceptible to hybridisation, even protected areas show limited effectiveness in mitigating this threat. In the face of the detected patterns, we recommend that species conservation and management plans should be biome-and landscape-context-specific to ensure effective wildcat conservation, especially in the Mediterranean and Temperate Insular biomes.File | Dimensione | Formato | |
---|---|---|---|
Matias et al. - 2022 - Genetic integrity of European wildcats Variation .pdf
Solo gestori archvio
Descrizione: Articolo
Tipologia:
Versione Editoriale
Dimensione
3.78 MB
Formato
Adobe PDF
|
3.78 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.