The aim of this paper is to provide a Filippov-Wa\.{z}ewski Relaxation Theorem for the very general setting of Stieltjes differential inclusions. New relaxation results can be deduced for generalized differential problems, for impulsive differential inclusions with multivalued impulsive maps and possibly countable impulsive moments and also for dynamic inclusions on time scales.

Valeria Marraffa, Bianca Satco (2023). Relaxation result for differential inclusions with Stieltjes derivative. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 528(2), 1-20 [10.1016/j.jmaa.2023.127533].

Relaxation result for differential inclusions with Stieltjes derivative

Valeria Marraffa
;
2023-06-20

Abstract

The aim of this paper is to provide a Filippov-Wa\.{z}ewski Relaxation Theorem for the very general setting of Stieltjes differential inclusions. New relaxation results can be deduced for generalized differential problems, for impulsive differential inclusions with multivalued impulsive maps and possibly countable impulsive moments and also for dynamic inclusions on time scales.
20-giu-2023
Valeria Marraffa, Bianca Satco (2023). Relaxation result for differential inclusions with Stieltjes derivative. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 528(2), 1-20 [10.1016/j.jmaa.2023.127533].
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0022247X2300536X-main.pdf

embargo fino al 20/06/2025

Tipologia: Post-print
Dimensione 521.24 kB
Formato Adobe PDF
521.24 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1-s2.0-S0022247X2300536X-main.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 398.57 kB
Formato Adobe PDF
398.57 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/597173
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact