The aim of this work was to study the effect of organic loading rate on the production of Polyhydroxyalkanoates (PHA) from sewage sludge. Synthesis of PHA using sewage sludge as platform was achieved in this work. Three pilot-scale selection-sequencing batch reactors (S-SBR) were used for obtaining a culture able to accumulate PHA following a strategy of aerobic dynamic feeding (ADF) at different volumetric organic-loading-rate (vOLR): 1.3, 1.8 and 0.8 g COD L-1 d-1 for S-SBR 1, S-SBR 2 and S-SBR 3, respectively. Decreasing the vOLR enhanced the general performance of the process as for organic matter removal (from 99.2% ± 0.3% in S-SBR-3 to 92 ± 2 in S-SBR-2) while the opposite trend was recorded for PHA production (6.0 PHA % w/w in S-SBR-3 vs 13.7 PHA % w/w in S-SBR-2 at the end of the feast phase). Furthermore, indirect and direct emissions, as N2O, were evaluated during the process for the first time. Finally, three accumulation tests were performed achieving 24% w/w.
Isern-Cazorla L., Mineo A., Suarez-Ojeda M.E., Mannina G. (2023). Effect of organic loading rate on the production of Polyhydroxyalkanoates from sewage sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 343 [10.1016/j.jenvman.2023.118272].
Effect of organic loading rate on the production of Polyhydroxyalkanoates from sewage sludge
Mineo A.Secondo
Data Curation
;Mannina G.
Ultimo
Writing – Review & Editing
2023-10-01
Abstract
The aim of this work was to study the effect of organic loading rate on the production of Polyhydroxyalkanoates (PHA) from sewage sludge. Synthesis of PHA using sewage sludge as platform was achieved in this work. Three pilot-scale selection-sequencing batch reactors (S-SBR) were used for obtaining a culture able to accumulate PHA following a strategy of aerobic dynamic feeding (ADF) at different volumetric organic-loading-rate (vOLR): 1.3, 1.8 and 0.8 g COD L-1 d-1 for S-SBR 1, S-SBR 2 and S-SBR 3, respectively. Decreasing the vOLR enhanced the general performance of the process as for organic matter removal (from 99.2% ± 0.3% in S-SBR-3 to 92 ± 2 in S-SBR-2) while the opposite trend was recorded for PHA production (6.0 PHA % w/w in S-SBR-3 vs 13.7 PHA % w/w in S-SBR-2 at the end of the feast phase). Furthermore, indirect and direct emissions, as N2O, were evaluated during the process for the first time. Finally, three accumulation tests were performed achieving 24% w/w.File | Dimensione | Formato | |
---|---|---|---|
Isern-Cazorla et al., 2023_JEMA.pdf
accesso aperto
Tipologia:
Pre-print
Dimensione
424.24 kB
Formato
Adobe PDF
|
424.24 kB | Adobe PDF | Visualizza/Apri |
1-s2.0-S0301479723010605-main.pdf
accesso aperto
Descrizione: © 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Tipologia:
Versione Editoriale
Dimensione
1.29 MB
Formato
Adobe PDF
|
1.29 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.