Let K be an algebraically closed field of characteristic 0. A curve of (K∗)2 arising from a Laurent polynomial in two variables is intrinsic negative if its tropical compactification has negative self-intersection. The aim of this note is to start a systematic study of these curves and to relate them with the problem of computing Seshadri constants of toric surfaces.

Laface A., Ugaglia L. (2023). On Intrinsic Negative Curves. In T. Dedieu, F. Flamini, C. Fontanari, C. Galati, R. Pardini (a cura di), The Art of Doing Algebraic Geometry (pp. 241-259) [10.1007/978-3-031-11938-5_10].

On Intrinsic Negative Curves

Ugaglia L.
2023-04-15

Abstract

Let K be an algebraically closed field of characteristic 0. A curve of (K∗)2 arising from a Laurent polynomial in two variables is intrinsic negative if its tropical compactification has negative self-intersection. The aim of this note is to start a systematic study of these curves and to relate them with the problem of computing Seshadri constants of toric surfaces.
15-apr-2023
Settore MATH-02/B - Geometria
Laface A., Ugaglia L. (2023). On Intrinsic Negative Curves. In T. Dedieu, F. Flamini, C. Fontanari, C. Galati, R. Pardini (a cura di), The Art of Doing Algebraic Geometry (pp. 241-259) [10.1007/978-3-031-11938-5_10].
File in questo prodotto:
File Dimensione Formato  
978-3-031-11938-5_10.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 635.52 kB
Formato Adobe PDF
635.52 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/592641
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact