We present two approaches to investigate the validity of connexive principles and related formulas and properties within coherence-based probability logic. Connexive logic emerged from the intuition that conditionals of the form if not-A, then A, should not hold, since the conditional’s antecedent not-A contradicts its consequent A. Our approaches cover this intuition by observing that the only coherent probability assessment on the conditional event A | not-A is p(A | not-A) = 0. In the first approach we investigate connexive principles within coherence-based probabilistic default reasoning, by interpreting defaults and negated defaults in terms of suitable probabilistic constraints on conditional events. In the second approach we study connexivity within the coherence framework of compound conditionals, by interpreting connexive principles in terms of suitable conditional random quantities. After developing notions of validity in each approach, we analyze the following connexive principles: Aristotle’s theses, Aristotle’s Second Thesis, Abelard’s First Principle, and Boethius’ theses. We also deepen and generalize some principles and investigate further properties related to connexive logic (like non-symmetry). Both approaches satisfy minimal requirements for a connexive logic. Finally, we compare both approaches conceptually.

Niki Pfeifer, Giuseppe Sanfilippo (2023). Connexive Logic, Probabilistic Default Reasoning, and Compound Conditionals. STUDIA LOGICA [10.1007/s11225-023-10054-5].

Connexive Logic, Probabilistic Default Reasoning, and Compound Conditionals

Abstract

We present two approaches to investigate the validity of connexive principles and related formulas and properties within coherence-based probability logic. Connexive logic emerged from the intuition that conditionals of the form if not-A, then A, should not hold, since the conditional’s antecedent not-A contradicts its consequent A. Our approaches cover this intuition by observing that the only coherent probability assessment on the conditional event A | not-A is p(A | not-A) = 0. In the first approach we investigate connexive principles within coherence-based probabilistic default reasoning, by interpreting defaults and negated defaults in terms of suitable probabilistic constraints on conditional events. In the second approach we study connexivity within the coherence framework of compound conditionals, by interpreting connexive principles in terms of suitable conditional random quantities. After developing notions of validity in each approach, we analyze the following connexive principles: Aristotle’s theses, Aristotle’s Second Thesis, Abelard’s First Principle, and Boethius’ theses. We also deepen and generalize some principles and investigate further properties related to connexive logic (like non-symmetry). Both approaches satisfy minimal requirements for a connexive logic. Finally, we compare both approaches conceptually.
Scheda breve Scheda completa Scheda completa (DC)
29-giu-2023
Settore MAT/06 - Probabilita' E Statistica Matematica
Settore MAT/01 - Logica Matematica
Niki Pfeifer, Giuseppe Sanfilippo (2023). Connexive Logic, Probabilistic Default Reasoning, and Compound Conditionals. STUDIA LOGICA [10.1007/s11225-023-10054-5].
File in questo prodotto:
File
s11225-023-10054-5.pdf

accesso aperto

Tipologia: Versione Editoriale
Dimensione 579.54 kB
Utilizza questo identificativo per citare o creare un link a questo documento: `https://hdl.handle.net/10447/588292`