We prove the existence of a nontrivial solution for a nonlinear (p, q)-Laplacian problem with Neumann boundary condition, on a non compact Riemannian manifold. The idea is to reduce the problem in variational form, which means to consider the critical points of the corresponding Euler-Lagrange functional in an Orlicz-Sobolev space. (C) 2019 Elsevier Inc. All rights reserved.

Nastasi A. (2019). Weak solution for Neumann (p,q)-Laplacian problem on Riemannian manifold. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 479(1), 45-61 [10.1016/j.jmaa.2019.06.015].

Weak solution for Neumann (p,q)-Laplacian problem on Riemannian manifold

Nastasi A.
Primo
2019-11-01

Abstract

We prove the existence of a nontrivial solution for a nonlinear (p, q)-Laplacian problem with Neumann boundary condition, on a non compact Riemannian manifold. The idea is to reduce the problem in variational form, which means to consider the critical points of the corresponding Euler-Lagrange functional in an Orlicz-Sobolev space. (C) 2019 Elsevier Inc. All rights reserved.
1-nov-2019
Nastasi A. (2019). Weak solution for Neumann (p,q)-Laplacian problem on Riemannian manifold. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 479(1), 45-61 [10.1016/j.jmaa.2019.06.015].
File in questo prodotto:
File Dimensione Formato  
Pubblicazione 6 - Antonella Nastasi.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 366.73 kB
Formato Adobe PDF
366.73 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/586972
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact