We establish some existence and regularity results to the Dirichlet problem, for a class of quasilinear elliptic equations involving a partial differential operator, depending on the gradient of the solution. Our results are formulated in the Orlicz-Sobolev spaces and under general growth conditions on the convection term. The sub- and supersolutions method is a key tool in the proof of the existence results.

Barletta G., Tornatore E. (2023). Regular solutions for nonlinear elliptic equations, with convective terms, in Orlicz spaces. MATHEMATISCHE NACHRICHTEN, 296(6), 2203-2213 [10.1002/mana.202100398].

Regular solutions for nonlinear elliptic equations, with convective terms, in Orlicz spaces

Tornatore E.
Secondo
2023-01-01

Abstract

We establish some existence and regularity results to the Dirichlet problem, for a class of quasilinear elliptic equations involving a partial differential operator, depending on the gradient of the solution. Our results are formulated in the Orlicz-Sobolev spaces and under general growth conditions on the convection term. The sub- and supersolutions method is a key tool in the proof of the existence results.
2023
Settore MAT/05 - Analisi Matematica
Barletta G., Tornatore E. (2023). Regular solutions for nonlinear elliptic equations, with convective terms, in Orlicz spaces. MATHEMATISCHE NACHRICHTEN, 296(6), 2203-2213 [10.1002/mana.202100398].
File in questo prodotto:
File Dimensione Formato  
Barletta Tornatore pre-print.pdf

accesso aperto

Tipologia: Pre-print
Dimensione 400.83 kB
Formato Adobe PDF
400.83 kB Adobe PDF Visualizza/Apri
Mathematische Nachrichten - 2023 - Barletta - Regular solutions for nonlinear elliptic equations with convective terms in.pdf

Solo gestori archvio

Descrizione: Ahead of print
Tipologia: Versione Editoriale
Dimensione 181.08 kB
Formato Adobe PDF
181.08 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/586398
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact