Hutchinson–Gilford progeria syndrome (HGPS) is a rare genetic disorder that causes systemic accelerated aging in children. This syndrome is due to a mutation in the LMNA gene that leads to the production of a truncated and toxic form of lamin A called progerin. Because the balance between the A-type lamins is controlled by the RNA-binding protein SRSF1, we have hypothesized that its inhibition may have therapeutic effects for HGPS. For this purpose, we evaluated the antidiabetic drug metformin and demonstrated that 48 h treatment with 5 mmol/l metformin decreases SRSF1 and progerin expression in mesenchymal stem cells derived from HGPS induced pluripotent stem cells (HGPS MSCs). The effect of metformin on progerin was then confirmed in several in vitro models of HGPS, i.e., human primary HGPS fibroblasts, LmnaG609G/G609G mouse fibroblasts and healthy MSCs previously treated with a PMO (phosphorodiamidate morpholino oligonucleotide) that induces progerin. This was accompanied by an improvement in two in vitro phenotypes associated with the disease: nuclear shape abnormalities and premature osteoblastic differentiation of HGPS MSCs. Overall, these results suggest a novel approach towards therapeutics for HGPS that can be added to the currently assayed treatments that target other molecular defects associated with the disease.

Egesipe A.-L., Blondel S., Lo Cicero A., Jaskowiak A.-L., Navarro C., De Sandre-Giovannoli A., et al. (2016). Metformin decreases progerin expression and alleviates pathological defects of hutchinson–gilford progeria syndrome cells. NPJ AGING AND MECHANISMS OF DISEASE, 2(1), 16026 [10.1038/npjamd.2016.26].

Metformin decreases progerin expression and alleviates pathological defects of hutchinson–gilford progeria syndrome cells

Lo Cicero A.;
2016-01-01

Abstract

Hutchinson–Gilford progeria syndrome (HGPS) is a rare genetic disorder that causes systemic accelerated aging in children. This syndrome is due to a mutation in the LMNA gene that leads to the production of a truncated and toxic form of lamin A called progerin. Because the balance between the A-type lamins is controlled by the RNA-binding protein SRSF1, we have hypothesized that its inhibition may have therapeutic effects for HGPS. For this purpose, we evaluated the antidiabetic drug metformin and demonstrated that 48 h treatment with 5 mmol/l metformin decreases SRSF1 and progerin expression in mesenchymal stem cells derived from HGPS induced pluripotent stem cells (HGPS MSCs). The effect of metformin on progerin was then confirmed in several in vitro models of HGPS, i.e., human primary HGPS fibroblasts, LmnaG609G/G609G mouse fibroblasts and healthy MSCs previously treated with a PMO (phosphorodiamidate morpholino oligonucleotide) that induces progerin. This was accompanied by an improvement in two in vitro phenotypes associated with the disease: nuclear shape abnormalities and premature osteoblastic differentiation of HGPS MSCs. Overall, these results suggest a novel approach towards therapeutics for HGPS that can be added to the currently assayed treatments that target other molecular defects associated with the disease.
2016
Egesipe A.-L., Blondel S., Lo Cicero A., Jaskowiak A.-L., Navarro C., De Sandre-Giovannoli A., et al. (2016). Metformin decreases progerin expression and alleviates pathological defects of hutchinson–gilford progeria syndrome cells. NPJ AGING AND MECHANISMS OF DISEASE, 2(1), 16026 [10.1038/npjamd.2016.26].
File in questo prodotto:
File Dimensione Formato  
npjamd201626.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 1.73 MB
Formato Adobe PDF
1.73 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/585132
Citazioni
  • ???jsp.display-item.citation.pmc??? 32
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 46
social impact