Weed control in urban and peri-urban orange orchards is challenging due to operational and legislative restrictions. Tillage, besides from negatively affecting soil fertility and microorganisms, is demanding for humans. On the other hand, herbicides are advised against due to the possibility to reach waterbodies from the soil surface. Therefore, in urban and peri-urban areas, instead of tillage and herbicides, mulching with black plastic geotextile fabric is often used. This study aimed at assessing the impact of long-term soil mulching with black plastic geotextile fabric on soil fertility, microbial community and yield of an orange orchard in comparison to conventional tillage. To this aim, four soil management systems were set up: rotary tillage for the last 15 years, mulching with black plastic geotextiles for the last 15 years, rotary tillage for 7 years followed by mulching for the last 8 years, mulching for 7 years followed by rotary tillage for the last 8 years. Soil samples were analyzed to determine the chemical and biochemical parameters related to soil fertility. In addition, the abundances of the main microbial groups were investigated. Mulching increased soil total organic C at least by 65%. The greater soil organic C in mulched soil in turn contributed to increase the cation exchange capacity (+62% on average) and microbial biomass C (+120% on average). Additionally, the microbial quotient exhibited higher values in mulched soils compared to tilled ones, suggesting a greater soil organic matter accessibility by soil microorganisms. Moreover, mulching favored fungi over bacteria, and Gram-positive bacteria over Gram-negative bacteria, thus contributing to the establishment of a microbial community more efficient in utilizing C sources. The latter result was confirmed by the lower values of the metabolic quotient in mulched soil compared to tilled one. Overall, the black plastic geotextile fabric improved chemical and biochemical soil fertility that, in turn, lead to a higher orange yield in mulched soil.
Sara Paliaga, Caterina Lucia, Daniela Pampinella, Sofia Maria Muscarella, Luigi Badalucco, Eristanna Palazzolo, et al. (2023). Shifting Long-Term Tillage to Geotextile Mulching for Weed Control Improves Soil Quality and Yield of Orange Orchards. AGRICULTURE, 13(4) [10.3390/agriculture13040764].
Shifting Long-Term Tillage to Geotextile Mulching for Weed Control Improves Soil Quality and Yield of Orange Orchards
Sara PaliagaPrimo
;Caterina Lucia
;Daniela Pampinella;Sofia Maria Muscarella;Luigi Badalucco;Eristanna Palazzolo;Vito Armando LaudicinaUltimo
2023-03-25
Abstract
Weed control in urban and peri-urban orange orchards is challenging due to operational and legislative restrictions. Tillage, besides from negatively affecting soil fertility and microorganisms, is demanding for humans. On the other hand, herbicides are advised against due to the possibility to reach waterbodies from the soil surface. Therefore, in urban and peri-urban areas, instead of tillage and herbicides, mulching with black plastic geotextile fabric is often used. This study aimed at assessing the impact of long-term soil mulching with black plastic geotextile fabric on soil fertility, microbial community and yield of an orange orchard in comparison to conventional tillage. To this aim, four soil management systems were set up: rotary tillage for the last 15 years, mulching with black plastic geotextiles for the last 15 years, rotary tillage for 7 years followed by mulching for the last 8 years, mulching for 7 years followed by rotary tillage for the last 8 years. Soil samples were analyzed to determine the chemical and biochemical parameters related to soil fertility. In addition, the abundances of the main microbial groups were investigated. Mulching increased soil total organic C at least by 65%. The greater soil organic C in mulched soil in turn contributed to increase the cation exchange capacity (+62% on average) and microbial biomass C (+120% on average). Additionally, the microbial quotient exhibited higher values in mulched soils compared to tilled ones, suggesting a greater soil organic matter accessibility by soil microorganisms. Moreover, mulching favored fungi over bacteria, and Gram-positive bacteria over Gram-negative bacteria, thus contributing to the establishment of a microbial community more efficient in utilizing C sources. The latter result was confirmed by the lower values of the metabolic quotient in mulched soil compared to tilled one. Overall, the black plastic geotextile fabric improved chemical and biochemical soil fertility that, in turn, lead to a higher orange yield in mulched soil.File | Dimensione | Formato | |
---|---|---|---|
Paliaga et al., 2023.pdf
accesso aperto
Tipologia:
Versione Editoriale
Dimensione
1.57 MB
Formato
Adobe PDF
|
1.57 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.